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Abstract

This paper studies improving joint segmentation and registration by introducing auxiliary la-
bels for anatomy that has similar appearance to the target anatomy while not being part of that
target. Such auxiliary labels help avoid false positive labelling of non-target anatomy by resolving
ambiguity. A known registration of a segmented atlas can help identify where a target segmentation
should lie. Conversely, segmentations of anatomy in two images can help them be better registered.
Joint segmentation and registration is then a method that can leverage information from both reg-
istration and segmentation to help one another. It has received increasing attention recently in the
literature. Often, merely a single organ of interest is labelled in the atlas. In the presense of other
anatomical structures with similar appearance, this leads to ambiguity in intensity based segmen-
tation; for example, when segmenting individual bones in CT images where other bones share the
same intensity profile. To alleviate this problem, we introduce automatic generation of additional
labels in atlas segmentations, by marking similar-appearance non-target anatomy with an auxiliary
label. Information from the auxiliary-labeled atlas segmentation is then incorporated by using a
novel coherence potential, which penalizes differences between the deformed atlas segmentation and
the target segmentation estimate. We validated this on a joint segmentation-registration approach
that iteratively alternates between registering an atlas and segmenting the target image to find a
final anatomical segmentation. The results show that automatic auxiliary labelling outperforms the
same approach using a single label atlasses, for both mandibular bone segmentation in 3D-CT and
corpus callosum segmentation in 2D-MRI.

1 Introduction

In computer vision, in general, and medical imaging, in particular, the segmentation of an image is
a common problem that has been studied extensively in the literature. Possible approaches can be
categorized by the amount of prior knowledge they use, such as intensity-based segmentation on the
one end of the spectrum and model-based segmentation on the other. Intensity-based segmentation
typically involves a local classifier to determine the type of tissue that a pixel most likely belongs to.
It can additionally regularize such segmentation, for example using Markov random fields (MRF) [1].
This method is typically fast, but lacks anatomical correctness as neither absolute nor relative spatial
locations (e.g., shapes) are taken into account. Due to its weak dependency on manual annotations,
many recent studies have focused on registration-based segmentation 2] where a single reference (atlas)
image is registered to a target image. The resulting transformation is then applied to the labelled atlas,
which yields a segmentation of the target image. While being widely used in medical imaging, image
registration alone cannot solve the segmentation task by itself as it is known to be an ill-posed problem
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Figure 1: Illustration of single- vs aux-label joint registration and segmentation. The intensity based
segmentation (b) of the target image (a) covers all bone. In a single-label approach (c), the method
tries to maximize the overlap between the deformed atlas segmentation of the jaw bone, and bone pixels
in the image. The proposed method uses an automatically generated aux-label atlas, which allows to
precisely segment the jawbone (c).

[3]. This is because anatomical correspondences, which are not guaranteed to exist, are computed using
surrogate criteria such as intensity similarity. In addition, the problem of non-rigid registration is known
to be NP-complete [4], thus making approximative algorithms prone to local optima, for example due
to poor initialization. Increasing the amount of prior knowledge is a common remedy for such problems,
for example by including multiple or statistical atlases [5, 6, 7].

In order to alleviate such problems, joint optimization of segmentation and registration was first
proposed by [8]. Such methods allow segmentation and registration processes to mutually benefit from
one another. On the one hand, knowing the segmentation of both target and atlas images one can greatly
improve their registration. On the other hand, knowing the perfect correspondences between such two
images will improve, and even solve completely, the (atlas-based) segmentation problem. Accordingly,
several approaches for such joint registration and segmentation have been proposed in the literature,
focusing on alternating registration and segmentation (ARS) methods.

An ARS approach that alternates between estimating a rigid deformation using Powells’ method
and updating the segmentation using iterative conditional modes (ICM) in an MRF was proposed in [8].
Another approach based on MRFs that alternates between solving one MRF to optimize registration
parameters and to update segmentation probabilities, and a second MRF to solve the segmentation
itself was introduced in [9]. A Bayesian framework to alternate between updating the registration and
estimating intensity ‘“nuisance” parameters while marginalizing over possible anatomical labels using
an EM algorithm was presented in [10]. There have also been studies on alternating registration and
segmentation in variational formulations. Those also rely on iteratively updating the registration and
segmentation solutions, for example, by using gradient descent [11, 12].

In many cases, this process can still be ambiguous, as the segmentation criterion may still find some
part of the anatomy that matches the given intensity prior, though not being part of the desired target.
This might occur for example in the segmentation of single bones, which unavoidably have similar
appearance to other bones. This leads to ambiguity in the joint process, leading to complications such
as leakage as illustrated in Fig. 1(c). In this paper, we propose the use of automatically-generated
auxiliary anatomical labels to alleviate this problem. Such labels are meant to identify voxels with the
appearance of the target anatomy in both the atlas and the target images. We show experimentally
that such auxiliary labels improve joint registration and segmentation.



2 Method

Let X be the target and A the atlas image, where both are functions 2 — F from the D-dimensional
discretized coordinate domain € NP, to image intensities F. A segmentation S = {sg,---, sy} is an
assignment of one such segmentation label to each pixel of an image. In segmentation, the goal is to find
a segmentation Sx of the target image X. Without loss of generality, we assume s € {lj, 1}, where I
labels background and Iy labels the target anatomy. In registration, the goal is to find a transformation
T such that the target image X and the transformed atlas image A(7T) are similar according to a
selected metric. 7 can be a non-rigid deformation represented by a D-dimensional displacement vector
field T : Q — R so that for each pixel/voxel i € Q: T (i) =i+ t;, where 7; and t; are shorthands for
the local deformation 7 (7) and displacement 7'(i). We will also use this notation to denote pixels in
an image, e.g. X;, A;. Then, I(T) =i — I(i + t;) Vi, indicates a deformed image. Values at non-grid
locations are linearly interpolated. Both finding a displacement vector field T' and a segmentation Sy
can be defined as separate energy minimization problems as follows:

Sx = argmlnz ;8 ( Z Aé{ag\l'seg (si,55) (1)
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where N (i) denotes the neighbors of a pixel i and ¢, ¥ are unary and pairwise potential functions,
and A\ are weights. The solutions ensure a smooth labelling of the image and can be found efficiently
using graph-based methods such as a-expansion graphcuts [13]. We follow standard approaches for
both segmentation and registration, using Hounsfield-unit based segmentation potentials as described
in [14] for bone segmentation in CT, and learned potential functions in the case of brain MR data. For
the registration process, we follow the approach of [2|, with normalized cross-correlation as the image
similarity metric.

2.1 Joint Registration and Segmentation

As a joint technique, we implement an alternating registration and segmentation(ARS) procedure similar
to [8]. In ARS, the estimated solution for one subproblem is used as prior knowledge in the other in an
iterative manner.

Using MRF approaches for both segmentation and non-rigid registration, we define an additional
energy that links the deformed atlas segmentation and the target segmentation, namely coherence
energy E°"(Sx, SA(T)). We compute this energy using a distance weighted overlap penalty between
the target segmentation and the deformed atlas segmentation as follows:

EM(S4,Sx,T) = 2(1 — (54, SA(T2) T (t4, 55) (3)
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(4)
where § is the Kronecker-delta, Dy, denotes the distance transform of S4 with respect to label s; and 7
is a tolerance parameter, which we decrease after each ARS iteration, starting from an empirically-set
tolerance of 16mm as can be seen in Fig. 3(right). This decrease in tolerance was motivated by the fact



that the expected difference between deformed atlas segmentation and target segmentation is larger in
earlier levels compared to later stages. In experiments, a small tolerance in early levels was observed
to undesirably force the target segmentation to be grossly dissimilar from the true segmentation, which
in turn leads to a local optimum in the iterative registration process. This was mitigated by the
above-mentioned adaptive setting.

The ARS algorithm then alternates between estimating the registration and the segmentation as
follows:

Tn+1 = arg mjin Ereg (X, A, T) + Acoh-EiCOh(‘SvAv S?(? T)) (5)
S¥tl= arg max E*8(X, Sx) + Aeoh E©M(Sa, Sx, T ), (©)
X

where A.on weights the influence of the coherence energy, which is included in the MRF based solver
as a unary potential. Note that in the first iteration, no estimate of the segmentation is known and a
regular registration is computed. We check for convergence by computing the overlap between S™ and
S™~1. The algorithm exits, if this overlap reaches 99% or a maximum of 10 iterations is reached.

2.2 Auxiliary Labels

Naturally, any criterion similar to E°°"(Sy, S4 (7)) will favor a high overlap between a single-label atlas
segmentation and any pixels which satisfy an intensity model for this anatomy. This may lead to a
sub-optimal solution in the joint registration and segmentation process, where the atlas segmentation is
forced to overlap with non-target anatomy pixels. An example is given in Fig. 1, where the mandibular
bone is extended into the skull. While this effect may partly be mitigated by strong regularization,
this would then not only deteriorate results in regions where high flexibility is necessary, but also could
make the algorithm more sensitive to initialization.

We thus propose auziliary anatomical labels in both the atlas and the target segmentation in order to
prevent such false positives in ARS segmentation. Such auxiliary labels can be obtained automatically
using the following procedure:

1. An automatic binary segmentation S4 of the atlas image is computed using Eq. (1).

2. The ground-truth atlas segmentation is dilated and subsequently subtracted from the estimate Sy4.
Such dilatation helps remove minor artefacts near the boundary of the ground-truth segmentation.

3. The auxiliary label [, is then assigned to the remaining voxels in S before combining it with the
ground-truth S4 to generate an aux-label atlas segmentation.

An example of this process is shown in Fig. 2.

2.2.1 Coherence Potentials foe Auxiliary Labels

While the anatomy represented by the auxiliary label is expected to provide valuable information to
an ARS algorithm, it is less reliable in comparison to a manual annotation for two reasons: (i) The
auxiliary labelling is obtained automatically and thus prone to errors due to imaging artefacts. (ii)
While the primary label was chosen carefully by a medical expert, our automatically labelled structures
may not represent anatomies for which correspondences exist across different patients. Therefore, such
auxiliary labels are expected inherently to have less coherence between the deformed atlas segmentation



(a) atlas image (b) automatic segmentation (c) manual segmentation (d) aux-label segmentation

Figure 2: Pipeline for obtaining the auxiliary-labelled atlas segmentation. The original image (a) is
segmented using the segmentation sub-graph yielding a binary segmentation (b). The known ground-
truth segmentation (c) is then removed from an eroded version of (b) in order to obtain the second
label segmentation, which is subsequently diluted. In a last step,the ground-truth and the second label
segmentation are combined, yielding the final aux-label segmentation (d).

and the target segmentation estimate. We accommodate this by augmenting the coherence potential
as follows:

TR (1, 5) = {‘I’C‘)h(ti, si) it (s =1p) V (Sa(T)i =), o

e min(1, Ul (¢;,5;)) otherwise.

This function essentially truncates the coherence potential to a maximum of 1, if neither the target
segmentation label nor the deformed atlas segmentation label is the foreground label ;. This limits
the cost of labelling pixels in the target image as background, when the deformed atlas segmentation is
labelled as l,. Analogously, the cost of labelling pixels as auxiliary anatomy, when the deformed atlas
segmentation is labelled as background, is then also limited.

3 Experimental Evaluation

We evaluated our method on two datasets: a set of 70 mid-saggital slices of 2D brain MR, where
the task is to segment the corpora callosa, and a set of 14 3D CTs of the head, where the task is to
segment the mandibular bone. The mandibular bone dataset represents a typical clinical problem, and
the corpus callosum dataset provides an opportunity to evaluate our algorithm on a significantly larger
dataset and a different modality. Both datasets were rigidly registered to a common reference frame,
and gold-standard segmentations have been provided by experts. We report Dice’s coefficient (DICE),
Hausdorff distance (HD) and mean surface distance (MSD) as quantitative measures of segmentation
accuracy. We optimized the parameters of each method separately using a small subset of the images.
Additionally, we report results for pure MRF segmentation (MRF-Seg.), and for pure MRF registration
which is our implementation of [2] (MRF-Reg.).

Mandibular Bone Segmentation. A dataset of 15 3D CT scans of the head with 160x160x120 px>
dimensions and 1 mm?® voxel size was used for our validation, with the mandibles in each segmented by
an expert. Due to older age group, the amount of teeth varies largely in this set, which in addition to
artefacts from metal implants makes both automatic registration and segmentation of the mandibles a
challenging task. We performed a leave-one-out (110) experiment by using each of the 15 images as the
atlas image in turn to segment the remaining 14 samples, resulting in 210 experiments for each method.
In Fig. 3(left), we present the average performance values over all experiments for the above-mentioned
methods. Note that the pure MRF-based bone segmentation method (MRF-Seg.) is the method
presented in [14], for which no atlas image is needed and thus only 15 experiments were required for



iter=0

2D MRI 3D CT
method DICE MSD HD DICE MSD HD
MRF-Seg. 0.837 0.500 8.34 0.90 3.39 17.00 R
MRF-Reg. 0.918 0.093 2.85 0.849 0.32 11.69 -

ARS (single-label) 0.918 0.084 2.31 0.924 0.16 9.1
ARS (aux-labelled) 0.925 0.064 2.11 0.933 0.13 7.88

Figure 3: Left: Average segmentation quality measures for the methods on both datasets. Right:
Progression of the coherence potential for a given deformation and decreasing tolerance.

Figure 4: Example segmentations of the corpus callosum in 2D MR. Top row shows single-label ARS
segmentation estimate, bottom row with the auxiliary label. Primary label is shown in red, auxiliary
label is colored green. In most cases, the auxiliary-labelled estimate yields a better segmentation
in comparison to single-label ARS. The right-most column shows a failure case, where the auxiliary
segmentation label is mis-matched, causing an incorrect alignment.

this method. Also, [14] merely finds a separate label for each connected bone region, assuming the
target anatomy to be the largest connected region. However, this is not true for the mandible in the
head CT scans. Therefore, we had to select the label for the mandible in a manual post-processing step,
positively biasing the results in favor of MRF-Seg [14].

Corpus Callosum Segmentation. A second experiment was performed using 70 mid-saggital slices
of 2D MR images of the brain with 0.33 mm? pixel resolution. After rigid pre-alignment, each image
was cropped to a fixed 200x120 px? region of interest. The total number of leave-one-out experiments
for each method is then 4830, where we performed the same experiments as above, with the exception
of the segmentation potential functions having been replaced by intensity based classifiers. We used
Gaussian mixture models for foreground/background with four densities for the segmentation unary
potential and random forests [15] for the pairwise potentials, both trained using the atlas image. The
negative logarithm of the classification probabilities were used as unary and pair-wise energies in the
segmentation graph. We report the average metrics similarly in Fig. 3(left), and show sample results in
Fig. 4.

3.1 Discussion

For both the corpus callosum and the mandibular bone segmentation tasks, aux-label ARS outperforms
single-label ARS significantly (p < 1.7e~*). This gain comes at some moderate additional cost, as aux-
label ARS requires the additional computation of the auxiliary label distance transform in the coherence
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Figure 5: Effect of coherence potential weight on single- and aux-label ARS.

potential for both the segmentation and the registration steps, and also an additional segmentation label
needs to be generated in the segmentation step. We solve the aux-label segmentation problem using the
efficient alpha-expansion graph-cuts algorithm [13], which can guarantee that the solution is within a
known factor of the global optimum. The following observations are made when comparing single- and
aux-label ARS with respect to changing the free parameter A.on. Firstly, the optimal Aoy, is an order of
magnitude larger for the single-label ARS compared to its auxiliary-labelled version. Additionally, the
optimal segmentation weights are slightly lower for the single-label ARS, causing it to more strongly rely
on the registration information. This is indeed expected, as the segmentation sub-problem is essentially
ill-posed when using only one label. In contrast, aux-label ARS is much less susceptible to sub-optimal
parametrization in comparison to single-label ARS as can be seen from the narrower range in both
Dice’s coefficient and Hausdorff distance. This demonstrates that the aux-label ARS formulation is
indeed better suited for joint segmentation and registration problems as in this paper.

4 Conclusions

In this work, we have presented a novel approach using automatically generated auxiliary anatomical
labels for joint segmentation and atlas registration. A distance-weighted overlap energy was proposed to
couple the segmentation and registration process in an iterative fashion. We show experimentally that
automatic auxiliary labelling helps improve segmentation quality compared to joint segmentation and
registration using single target label alone. Although the presented method focuses on segmentation as
a pixel-labelling problem, we expect similar behaviour for other segmentation methods such as active
contours. Here, evolving a target contour simultaneously to auxiliary contours may help to avoid poor
local optima which can result from initialisation problems or image artefacts.
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