
On the Controllability of Dynamic Model-Based Needle Insertion in
Soft Tissue

Amir Haddadi† , Orcun Goksel‡, Septimiu E. Salcudean‡, and Keyvan Hashtrudi-Zaad†

Abstract— Soft tissue needle guidance and steering for clini-
cal applications has been an active topic of research in the past
decade. Although dynamic feedback control of needle insertion
systems is expected to provide more accurate target tracking, it
has received little attention due to the fact that most available
models for needle-tissue interaction do not incorporate the
dynamics of motions. In this paper, we study the controllability
of rigid or flexible needles inside soft tissues using mechanical-
based dynamic models. The results have significant implications
on the design of suitable feedback controllers for different types
of needle insertion systems.

I. INTRODUCTION

Needle and catheter insertion is a common step taken in
many clinical diagnostic and therapeutic procedures. Such
procedures include tissue biopsy [1], radioactive seed im-
plantation in brachytherapy [2], and anesthetic insertion [3].
In order to minimize damage to the patient body, needles
are normally flexible, long and slender, which causes needle
deflections during needle insertion procedures. Also inserting
and retracting needles cause soft tissues to deform. In addi-
tion to the above factors, tissue swelling and deformation due
to edema and tissue movements due to respiration influence
the accuracy with which the needle can be guided to a desired
target inside the soft tissue [4], [5].

Robot-assisted needle insertion has recently received sig-
nificant attention for its potential capability in delivering
highly accurate targeting [1], [3], [6], [7]. Due to the lack
of an accurate yet simple enough dynamic model for the
coupled needle-tissue system [8], most of the related studies
are focused on computer simulations [9], [10], pre-planning
[4], steering [11], and path-planning [12], rather than the
automatic control of the flexible needle.

Path-planning, by itself, is not sufficient to proceed to
robot-assisted needle insertion, unless there is a control
system which can control the needle to track the designed
path. Pre-planning is an offline process in which the needle
insertion parameters such as the insertion angle and bevel
orientation are derived prior to the insertion [4]. Steering
is a closer approach to a control strategy. DiMaio et al.
[11] derived a needle manipulation Jacobin, which relates
the desired needle tip to base velocities, using numerical
needle insertion models that included needle deflection and
tissue deformation. Glozman et al. [6] used the analytical
forward and inverse kinematics of a simplified needle-tissue
model to determine the required needle base trajectory for
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any desired needle tip trajectory. Although real-time, the
steering methods do not compensate for unwanted errors
and disturbances applied to the needle tip, as opposed to
closed-loop control of the base. Thus, there is a need to
design appropriate control methodologies for flexible needle
insertion [3].

Studies on feedback control of needle insertion are very
limited [3]. Hauser et al. proposed a closed-loop model
predictive controller that would steer the needle along helical
paths to reach a desired target position based on a kinematic
model of the circular movements of the needle caused by the
bevel tip [13]. For such models there is no distinct relation
between input forces and control objective or tip position,
which requires needle dynamic equations.
Reed et al. control bevel-tip orientation through a torque
applied about the needle base in the presence of torsional
friction [14]. They use a dynamic model of the needle inside
the soft tissue as a continuum medium and design their
controller. In such cases, as in all dynamic control methods,
a question remains to be answered is whether or not the
proposed dynamic models are controllable.

In this paper, we will first derive a dynamic model for a
rigid needle inside a soft tissue modeled by a finite element
model. We will determine the nonlinear controllability of
the system states in the entire operational workspace. We
will then incorporate the angular-spring method [15] in
a mechanical-based dynamic model of the flexible needle
and will discuss system controllability of the nonlinear and
linearized models. The results will lead to some important
conclusions regarding feedback control of rigid and flexible
needles inside soft tissues.

II. CONTROL OF RIGID NEEDLES IN SOFT TISSUE

In this section, we will analytically derive a dynamic
model of a rigid needle moving inside a soft tissue in a
two-dimensional plane (2D), as illustrated in Figure 1. We
will investigate whether the needle-tip can be controlled to
reach any desired path, while avoiding obstacles in the 2D
plane. The control actuation is provided by the input force
Fin along the needle base and the input torque τin about
the axis perpendicular to the plane of motion. The tissue
dynamics is modeled by a finite element model (FEM). In
order to model the tissue-needle interaction forces using the
FEM, we consider a number of nodes (in this case three)
along the needle as shown with dark (red) circles. Each node
separates one link from the next one. The mass and the length
of each link are denoted by m and L.
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Fig. 1. Model of the rigid needle and the interaction forces.

A. Dynamic model of rigid needles

We use the energy-based Lagrange approach [16] to reach
the dynamics of the coupled system. Our method considers
the needle-tissue interaction forces as external forces and
requires kinetic and potential energy of the needle. If we
consider the mass of each link at its distal end, and assume
that the needle moves δα in the direction of the needle
and rotates δθ about the axis perpendicular to the plane,
the displacement of the mass of each link (δxmi, δymi)
represented in the fixed Cartesian coordinates, shown by xt

and yt in Figure 1, is calculated as

δxmi = δαsinθ + iLδθcosθ, δymi = δαcosθ − iLδθsinθ

where 1 ≤ i ≤ 3 is the link number. These small displace-
ments can be used to derive velocities of each link along xt

and yt directions and, as a result, the kinetic energy of the
needle is calculated as

Kn =
1
2

3∑

i=1

m(α̇2 + i2L2θ̇2) +
3
2
Iθ̇2 (1)

where I is the link’s moment of inertia. The potential energy
of the rigid needle is zero.

We consider the effect of needle-tissue interaction as
external forces acting perpendicular to and along to the
needle at the three nodes, i.e. FNi = [FNix FNiy ], i = 1, 2, 3
on the coordinate attached to the needle, as shown in Figure
1. Using Lagrange’s approach, the dynamic equations of the
coupled system for the rigid needle can be derived as

α̈(3m) = Fin −
3∑

i=1

FNiy − Ff (2)

θ̈(14mL2 + 3I) = τin − L

3∑

i=1

iFNix. (3)

where α represents net translation of the needle, which is
found as a sum of the needle linear displacements in the
direction of its base link at each instant of time. The forces
FNiy are chosen based on the stick or slip modes of the
needle-tissue interaction model [17]. The force Ff = Bf α̇
is the friction force along the needle shaft, and the forces

FNix and FNiy are achieved from the FEM of the tissue
dynamics.

To derive the tissue-needle interaction forces, we consider
the interaction nodes of the tissue with the needle as the
working nodes and the rest of the tissue nodes as the
non-working nodes. If we denote the external forces and
displacements of the working and non-working nodes as Fw,
Fnw, uw, and unw, respectively, and consider the tissue as
an elastic object, then the forces at each node, are directly
related to the movement of each node of the FEM of the
tissue according to [17]

(
Fw

Fnw

)
=

(
Kw1 Kw2

Knw1 Knw2

)(
uw

unw

)
(4)

where the block matrices Kw1,Kw2,Knw1 and Knw2

denote the tissue stiffness matrices. if the nodes of the
tissue and joints of the needle match, we have Fw6×1 =
[FN1x FN1y . . . FN3x FN3y]T , otherwise FNix and FNiy

forces can be written as functions of the Fw components.
The above FEM equation, includes only tissue stiffness
model. However, the results can be easily generalized to
tissue models that include tissue viscosity and mass. Con-
sidering zero force boundary condition, the external forces
at the non-working nodes are all nulled, that is Fnw = 0.
In this case the working node interaction forces can be lin-
early expressed in terms of the working node displacements
according to Fw = [Kw1 − Kw2K−1

nw2Knw1]uw. As a
result, the interaction forces FNix and FNiy are nonlinear
functions of θ and α. The above derivations are valid for
the stick mode, in which the needle is not cutting the tissue.
For the slip mode, in which the tissue is being cut, forces
along needle link directions are set to zero. The net amount
of force at each node can be decomposed into parallel and
perpendicular components in order to originate the effective
stiffness at each node.

The tissue-needle dynamics (2)-(3) can be presented in the
state-space form





ẋ1 = x3

ẋ2 = x4

ẋ3 = 1
3m [Fin −

3∑

i=1

FNiy −Bfx3]

ẋ4 = −
L

3∑

i=1

iFNix

14mL2+3I + τin

14mL2+3I

(5)

where x1 = α, x2 = θ, x3 = α̇ and x4 = θ̇ are the states
of the system. The nonlinear state-space equations in (5)
can be re-written in the following general standard form for
nonlinear systems suitable for the analysis of controllability

Ẋ = f(X) + g1u1 + g2u2, (6)

where X = [x1 x2 x3 x4]T is the vector of system states,



u1 = Fin, u2 = τin, and

f(X) =




x3

x4

− 1
3m (

3∑

i=1

FNiy + Bfx3)

− L
14mL2+3I

3∑

i=1

iFNix




(7)

g1 =




0
0
1

3m
0


 ,g2 =




0
0
0
1

14mL2+3I


 . (8)

B. Controllability of Rigid Needle Insertion

Controllability of a nonlinear system refers to the property
of the system by which suitable input can be found such
that the states of the system can reach any point within the
state space from any initial condition in finite time. For the
tissue-needle nonlinear dynamic system (6), controllability
determines whether one can steer the needle-tip to any
desired position at any desired velocity from any initial
position and velocity; in other words, whether the user has
full control over the position profile of the needle-tip.

To investigate the controllability of the nonlinear system
(6), one should check for the rank of the controllability
matrix, defined as the matrix containing columns chosen
from the following distribution [18]

span{f ,g1,g2, [adk
f ,g1], [adk

f ,g2], [adk
g1

,g2]} (9)

for k = 1, 2, 3, ... . Here, [ad1
f(X),g] = [f(X),g] := ∂g

∂X f −
∂f
∂Xg is the adjoint or the Lie bracket of the two vectors f(X)
and g, and [adk

f(X),g] = [f(X), adk−1
f(X)]. The maximum k is

chosen such that the above-mentioned distribution becomes
involutive, in other words no higher-order Lie brackets add
to the rank of the span. If the defined controllability matrix
is full rank for the entire state space, in our case rank=4, the
nonlinear system is controllable.

Using (7-8) we can derive the controllability matrix

Ψ =
(

g1 g2 [f(X),g1] [f(X),g2]
)

(10)

with k = 1, which includes columns two to five of the
distribution (9). Since g1 and g2 are constant vectors,
[f(X),g1] = ∂f

∂Xg1 and [f(X),g2] = ∂f
∂Xg2. Although

involved nonlinear functions, since FNix and FNiy , i =
1, 2, 3, are functions of only x1 = α and x2 = θ, we have

∂f
∂X

g1 =




1
3m
0

− Bf

9m2

0


 ,

∂f
∂X

g2 =




0
1

14mL2+3I

0
0


 (11)

As a result,

Ψ =




0 0 1
3m 0

0 0 0 1
14mL2+3I

1
3m 0 − Bf

9m2 0
0 1

14mL2+3I 0 0


 . (12)
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Fig. 2. General model of a flexible needle inside an FEM tissue.

Performing column-wise operations on columns 1 and 3,
it is easily possible to show that matrix Ψ is full rank and the
nonlinear system (6) is controllable. Therefore, the states of
the system x1 = α, x2 = θ, x3 = α̇ and x4 = θ̇ and
hence the output of the system can be controlled to any
desired values using a suitable nonlinear feedback control.
From a medical perspective, this means that using accurate
manipulation of the needle base, either by the surgeon or a
controlled robot, the needle tip can reach any desired point
inside the tissue, in spite of possible tissue deformation. The
controllability of the above system can also be intuitively
justified, as the coupled system of the rigid needle and the
soft tissue has two modes (α and θ) and the same number
of control inputs. In the next section, we study effect of
flexibilities of the needles on system controllability.

III. CONTROL OF FLEXIBLE NEEDLES IN SOFT TISSUE

A. Dynamic model of flexible needles

In this section, in order to model the dynamics of flexible
needles in the plane, we take the same approach as in [15]
for angular springs model of flexible needles by considering
two pseudo joints along the needle and the mass of each link
at its distal end (as also described for rigid needles in Section
II). As shown in Figure 2, the unactuated pseudo joints are
modeled by torsional springs which allows the needle model
to conform to the bending shape of a flexible needle. Here
we consider kb1 and kb2 as the stiffness of the pseudo joints
and γ1 and γ2 as the joint angles. For the rigid needle in
Section II, springs are infinitely stiff, resulting in zero joint
angles. A more accurate model of the needle can be obtained
at the cost of higher dynamic complexity by increasing the
number of pseudo joints along the needle.

After deriving the kinetic energy of the needle, the poten-
tial energy of the pseudo joints due to needle flexibility, the
interaction forces of the needle with the tissue, the dissipative
energy of the tissue and the friction, the dynamic model of
the tissue-needle system can be written as1

MΘ̈ + CΘ̇ + KΘ = F−G− Ff . (13)

1Due to space limitation, the derivation details are omitted.



where, Θ = [α θ γ1 γ2]T is the vector of generalized
coordinates, F = [Fin τin 0 0]T is the vector of generalized
input forces, and Ff = [−Bf α̇ 0 0 0]T represents the friction
applied in the direction of needle movement. The friction
vector Ff can also include viscous friction at the pseudo
joints. The vector G represents the generalized forces applied
to the joints, which are the forces of interaction between
the tissue and the needle experienced at the three nodes
converted from Cartesian coordinates attached to the needle
to the joint space via the needle Jacobian. The counterpart
for this vector in the rigid-needle dynamic equations (3) is
[
∑3

i=1 FNiy L
∑3

i=1 iFNix]T . Similarly to the rigid case,
FNix and FNiy are linear functions of the working nodes,
but nonlinear functions of the states of the system.

The symmetric mass matrix M4×4 with components
Mij(Θ), i = 1, · · · , 4 is a nonlinear function of the gen-
eralized coordinates Θ, whereas the Coriolis and centrifugal
matrix C4×4 with components Cij(Θ, Θ̇), is a nonlinear
function of the generalized coordinates Θ and Θ̇ 2. The
matrix K is the diagonal stiffness matrix

K =




0 0 0 0
0 0 0 0
0 0 kb1 0
0 0 0 kb2


 , (14)

representing the spring effect at the joints.
Defining X := [x1 x2 · · ·x8]T = [α θ γ1 γ2 α̇ θ̇ γ̇1 γ̇2]T

as the vector of system states, and x1 = [x1 x2 x3 x4]T , the
needle-tissue dynamics can be written in the general state-
space form (6) or

{
ẋ1 = x2

ẋ2 = h(x1,x2) + ḡ1u1 + ḡ2u2
(15)

with f(X) = [x2 h(x1,x2)]T , g1 = [0 ḡ1]T , g2 = [0 ḡ2]T ,

h =




4∑

k=1

M−1
1k (−CΘ̇{k} −KΘ{k} + G{k} − Ff{k})

4∑

k=1

M−1
2k (−CΘ̇{k} −KΘ{k} + G{k} − Ff{k})

4∑

k=1

M−1
3k (−CΘ̇{k} −KΘ{k} + G{k} − Ff{k})

4∑

k=1

M−1
4k (−CΘ̇{k} −KΘ{k} + G{k} − Ff{k})




,

(16)

and

g1(x1) =




M−1
14

M−1
24

M−1
34

M−1
44


 , g2(x1) =




M−1
13

M−1
23

M−1
33

M−1
43


 , (17)

Here the subscript {k} denotes the kth element of the
corresponding vector and M−1

ij represents the element (i, j)
of the inverse mass matrix M−1.

2Due to lack of space and complexity of M and C, the details of these
matrices are not provided in this paper.

B. Controllability of Flexible Needle Insertion

Although it is possible to find a closed form representation
for h(x1,x2), ḡ1(x1) and ḡ2(x1), deriving a closed-form
expression for the nonlinear controllability matrix of such a
model, as described in Section II-B, is cumbersome if not
impossible. This is due to the fact that the controllability
matrix requires differentiation of very complex functions up
to the order m which is the order for which the distribution
achieved from the span of the set described in (9) becomes
involutive. For our case, we require at least 8 columns and
thus, the Lie brackets of at least order k = 2 in order
to analyze the controllability matrix. Although it might be
possible to derive such a matrix numerically for a pre-
planned task, the problem of solving for the controllability
matrix for the entire space is not practical.

However, assuming small deformations caused by needle
flexibility, we can study the controllability of the linearized
model of the flexible system around the operating point
X0 = [x10

T x20
T ]T = [α0 θ0 0 0 α̇0 θ̇0 0 0]T . Considering

δx1, δx2 as linear deflections from the system operational
states due the small inputs δu1 and δu2, the nonlinear
dynamics are linearized as follows

{
δẋ1 = δx2

δẋ2 = Φ1δx1 + Φ2δx2 + ḡ1δu1 + ḡ2δu2
(18)

where

Φ1 =
∂h(x1,x2)

∂x1
|X0 +

∂ḡ1(x1)
∂x1

u1|X0 +
∂ḡ2(x1)

∂x1
u2|X0

Φ2 =
∂h(x1,x2)

∂x2
|X0 . (19)

The partial derivatives of h(x1,x2), ḡ1(x1) and ḡ2(x1)
and hence Φ1 and Φ2 can be found from their closed-
form expressions using the Symbolic Toolbox of MATLAB.
Therefore, the system and input matrices related to the state-
space form of the system can be derived from (18) and (19)
as

A =
(
04×4 I4

Φ1 Φ2

)
,B =

(
04×1 04×1

ḡ1|X0 ḡ2|X0

)
. (20)

where I4 is the identity matrix of order four, A is an 8× 8
matrix and B is an 8× 2 matrix. Analysis of the linearized
system shows that, regardless of the operational point at
which the system is linearized, the system has at least two
eigenvalues at zero. This can be interpreted as the integral
action of the system for the α and θ modes, meaning that
increasing the input signal for any of the modes, i.e. Fin or
τin, causes continuous increase of these modes, which is an
intuitive conclusion.

To investigate the controllability of the linearized system,
we need check whether the controllability matrix [18]

C8×8 = [B AB A2B . . . A7B]. (21)

is full rank. Considering the rigid needle case in which α
and θ were controllable, we effectively study whether we
can control the states related to the introduced flexibilities.



In order to test system controllability, we numerically eval-
uated the C matrix at different operational points around
[2cm π/4rad 0 0 0.2cm/s 0.04rad/s 0 0], while one
parameter deviates at a time, with tissue effective stiffness
10KN/m along the direction and perpendicular to the
needle, and needle joint stiffness kb = 5, 000 µNm (based
on the values reported in [15]). The numerical evaluation
of the rank of the controllability matrix using MATLAB
function rank3, showed that the controllability matrix of
the linearized model of the tissue-needle system is rank
deficient (rank(C) < 8) in the majority of the points with
the condition number in the orders of 1013 to 1016. This
shows that the linearized model of such a flexible needle
is locally uncontrollable, and thus, the needle-tip cannot be
guaranteed to reach a desired target inside soft tissue.

Note that although the linearized system is not control-
lable, the lack of controllability of the nonlinear system does
not follow [18]. In a study of controllability of flexible-
link manipulator for free space motion by Tosunoglu et
al. [19], it has been mentioned that one or more of the
flexible modes are not controllable in certain configurations,
called inaccessible positions. This is related to the fact that
a flexible-link in free motion is under-actuated. However,
the problem of flexible needle insertion in soft tissue can be
different, as the tissue-needle interaction forces that affect the
motion of the pseudo joints are functions of the controllable
system states α and θ. Further studies are required for
nonlinear controllability or observability of such systems.

IV. CONCLUSIONS

In order to fully control the motion of a rigid or a flexible
needle body and its tip inside a soft tissue via feedback
control, we need to first determine whether such a needle-
tissue system is controllable. We have shown that a rigid
needle moving in 2D inside a soft tissue modeled by FEM
is dynamically controllable. As such, the needle-tip as a
function of the system states, can theoretically reach any
target position. To analyze controllability of the tissue-needle
system for a flexible needle, we utilized the mass-spring
model, based on the angular spring model of the needle
[15], consisting a series of cascading masses and springs.
Due to the complexity of the nonlinear dynamics of the
coupled system and the need for second and higher order
partial derivatives of these nonlinear functions, the analysis
of controllability for nonlinear system proved cumbersome,
if not impossible. However, our analysis of the linearized
model have shown that the flexible needle inside soft tissue
is not locally full-state controllable. As a result, regular state-
feedback controls cannot guarantee the needle-tip to reach
any desired target that may move due to tissue deflection
or other factors. Future work will aim towards the analysis
of controllability for other models of flexible needle, and
designing suitable control systems for rigid and flexible
needles in consideration of the above controllability results.

3The rank is evaluated by the number of singular values of C that are
larger than a tolerance number, which is determined by the size of the matrix
and the floating point precision of maximum singular value of C.
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