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Abstract— Numerical simulation of ultrasound images can
facilitate the training of sonographers. A realistic appearance
of simulated ultrasonic speckle is essential for a plausible
ultrasound simulation. An efficient and realistic model for
ultrasonic speckle is the convolution of the ultrasound point-
spread function with a parametrized distribution of point
scatterers. Nevertheless, for a given arbitrary tissue, such
scatterer distributions that would generate a realistic image
are not known a priori, and currently there is no principled
method to extract such scatterer patterns for given target tissues
to be simulated. In this paper we propose to solve the inverse
problem, in which an underlying scatterer map for a given
sample ultrasound image is estimated. From such scatterer
maps, it is also shown that a parametrization distribution model
can be built, using which other instances of the same tissue can
be simulated by feeding into a standard speckle generation
method. This enables us to synthesize images of different tissue
types from actual ultrasound images to be used in simulations
with arbitrary view angles and transducer settings. We show in
numerical and physical tissue-mimicking phantoms and actual
physical tissue that the appearance of the synthesized images
closely match the real images.

I. INTRODUCTION

Ultrasound (US) simulation is essential in the context
of training simulators for medical students and doctors.
Interpolative methods use pre-recorded patient data, through
which the ultrasound plane can be sliced in real-time with [5]
or without [1] deformation effects. Despite the photo-realistic
images, this constrains the simulations drastically by only
allowing simulation at voxel where data is available and
also limiting image settings and viewing angle to those
used in acquisition. Wave-based simulation, such as Field
II [7], is an alternative that is accurate but slow and thus
typically used only for offline simulation. In contrast, fast
ray-based methods [12], [11], [3] are suitable for interactive
US generation. While ray-based methods successfully model
large-scale structures and wave interactions, they are less
suited to simulate sub-wavelength interactions, at the scale of
which wave-like properties become predominant and create
the typical noise patterns known as ultrasonic speckles.
These are caused by the interference of diffuse reflections
from countless microscopic structures in the tissue. These
structures, which are too small to be observed directly but
nevertheless scatter the ultrasound, are commonly called
scatterers.

For simulation, spatial scatterer distributions are often
created statistically [8], [7], from which convolution tech-
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Fig. 1. Overview of the problem definition. Using an input image of
ultrasonic speckles and assuming an underlying scatterer model, we first
reconstruct the scatterer distribution by solving an inverse problem and
then statistically parametrize this distribution. Subsequently, new tissue
instances can be generated from this parametrization with the forward
pipeline generating realistic speckle patterns resembling the input tissue.

niques for speckle generation can generate realistic speckle
patterns [2], [4]. In contrast to earlier works modeling such
scatterer locations as continuous spatial variables, a recent
ray-based simulation [3] suggested the use of discrete scat-
terer approximations in order to facilitate the GPU rendering
pipeline where scatterers are treated as 3D texture patterns.
In that work and others, it has been also shown that for a
fine-tuned parametrization of a spatial scatterer distribution,
realistic looking tissue appearance can be generated. Never-
theless, finding such a parametrization for a particular tissue
type currently would require a tedious process of manual
trial-and-error by observing generated images, as the final
appearance relates to the parametrization in a non-trivial
fashion. To our knowledge, there is no automatic method
available yet to find such a parametrization. We propose
an inverse-problem approach to extract scatterers based on
speckle observations, such that images of this tissue region
can be simulated from arbitrary viewing angles and with
different imaging parameters. Additionally, we propose to
estimate parametric models for those scatterer distributions
in order to simulate other instances of the same tissue type,
e.g. to simulate a whole region from an exemplary patch.

II. METHODS

Typical convolution-based ultrasound simulation takes a
scatterer distribution and convolves it with a point-spread
function to generate simulated ultrasound radio-frequency
(RF) data, which is then post-processed (envelope detection,
dynamic-range adjustment, etc) to generate an image; called
the forward-problem (FP) in the top row of Fig. 1. Accord-
ingly, we define the inverse problem (IP) as recovering the
scatterer parameterization from given ultrasound images.



Fig. 2. RF data from synthetic and real phantoms (left) and after envelope
detection (right). Envelope images are the input to our method.

A. Forward problem

We assume a well-established model for the ultrasound
speckle and its simulation [2], [9], [8]. The methods are
presented below in 2D ignoring the finite ultrasound beam-
thickness, although they could extend to 3D without loss of
generality. The model computes ultrasonic speckle intensity
I(x, y) by convolving point-like scatterers in the tissue
T (x, y) with the ultrasonic impulse response H(x, y) from
each of those, called the point-spread function (PSF), i.e.:

I(x, y) = T (x, y) ∗H(x, y) . (1)

H(x, y) approximates the ideal sinc kernel, a Gaussian
modulated with a cosine in the axial direction y, i.e.:

H(x, y) = e
x
σx

+ y
σy cos(2πfy) . (2)

T is traditionally modeled as a collection of scatterers with
varying amplitudes and spatial positions [7]. Assuming to
linearity, a speckle pattern is generated by the superposition
(convolution) of the individual impulse responses of all such
scatterers. The final B-mode image is then obtained after
envelope detection, time-gain compensation, and dynamic-
range (log) compression.

To utilize GPU pipelines, Bürger et al. [3] used a dis-
cretized version of this model where scatterers are repre-
sented on a discretized texture grid, i.e. T (x, y). They also
introduced a 3-parameter approximation to model tissue-
specific sparse scatterer patterns. This uses a normal dis-
tribution Nµ,σ , which has two parameters, and a scatterer
sparsity parameter r, which is the ratio of texels populated
with a scatterer. We adopt a 2D version of this model to
formulate the forward problem. The goal is then solving the
inverse problem of extracting µ, σ, and r from a sample US
image.

The steps for our proposed IP approach can be seen in the
top row of Fig. 1, and are detailed below.

B. US (envelope) acquisition

The first input to our method is the US image of the tissue
region that we wish to simulate. Using our method, a scat-
terer map of that region can then be recovered. Nevertheless,
the goal of modeling the parametrization of the scatterers
for a particular tissue type implies the constraint that the
input image should be from a homogeneous tissue region
and does not have large structures that can not be modeled
statistically. Accordingly, a small homogeneous US image
patch is selected from the tissue targeted for simulation. We
acquire RF data and use its envelope (see Fig. 2) as input to
our method, since (i.) the phase information in RF makes IP
formulations ill-conditioned, and (ii.) the envelope contains

Fig. 3. Since convolution with a PSF is a linear operation and can be
expressed with a sparse convolution matrix A acting on the scatterers x to
yield image pixel intensities b, its effect can hence be reversed by solving
the inverse problem using convex optimization.

sufficient information for convolution-based representation
of US texture. We do not apply further processing such as
log-compression to avoid nonlinear transformations to the
signal. Precisely, we apply Hilbert transform to raw RF data
to obtain the envelope signal without the carrier wave.

As a second input, we need the PSF, H(x, y), of ultra-
sound imaging within this patch. By using US envelope data,
the PSF in our method effectively simplifies to:

H ′(x, y) = e
x
σx

+ y
σy . (3)

Given σx and σy , the PSF can then be approximated. In
simulations, such PSF can be known precisely from the FP.
For acquired data, the PSF is currently estimated empirically
from the size of the speckles, although it could be determined
via simulations from accurate models of the transducer [10],
e.g. Field II, or experimentally by imaging sub-wavelength
synthetic features, e.g. wires, in degassed water.

C. Scatterer reconstruction

1) Setting up the inverse problem: For extracting the
scatters from an image, one has to solve the scatterers
T (x, y) based on Eq. 1 for given speckle image intensities
I(x, y)=T (x, y) ∗ H ′(x, y). Convolution can be written as
a linear operation Ax = b as shown in Fig. 3. A is then
the convolution matrix, each row of which contains all PSF
values at columns corresponding to image indices that this
PSF kernel would operate on for that row. x is the column
vector of all scatterers discretized on a grid, b is the resulting
column vector of image intensities. For a scatterer texture
resolution ns×ms and a speckle image resolution nb×mb,
x has then nsms elements, b has nbmb elements, and A has
nsms × nbmb elements.

Since H ′(x, y) is separable, the convolution matrix can
be written as a product A = CD of Toeplitz matrices,
where C and D represent the convolution in lateral and
axial directions, respectively. In our implementation, the PSF
convolution kernel is cutoff at 4 standard deviations where
the energy becomes negligible. For example, σx = 2.5 and
σy = 1.5 pixels (in image scale – not RF) then results
in a window size of 20 and 12 pixels for the lateral and
axial convolution kernels, and A has accordingly at most
240 nonzero entries per row.



Since the scatterers is an abstract definition merely for the
approximation of subwavelength particles, there is indeed no
clear definition for their true resolution, i.e. Field II uses a
continuous representation, while others use a discretization
at an arbitrary resolution [3]. It is thus rather their represen-
tation power of the actual image content and, for our case,
speckle appearance that matters. The resolution must clearly
be high enough to simulate visual complexity of a realistic
image, which hence should be at least as fine as the image
resolution. Empirical tests with a scatterer resolution equal to
the image resolution and up to 16 times the image resolution
gave us satisfactory results, also with reasonable computation
times of seconds to minutes for scatterer reconstruction.

2) Solving the inverse problem: If and when the num-
ber of measurements is equal or less than the number of
unknowns, e.g. while using a single image to reconstruct
the scatterers at a higher resolution, then the linear system
is underdetermined and hence regularization or additional
constraints are required to get viable solutions. We use total-
variation regularization using the L1 norm in order to obtain
sparse scatterer reconstructions by solving:

x̂ = argmin
x

||Ax− b||2 + δ||x||1 s.t. x ≥ 0 , (4)

which favors positive sparse x with small scatterer ampli-
tudes. The constraint ensures the scatterer responses to be
positive, modeling the actual physics while also increasing
solution robustness. δ is empirically fixed to 10−5 in all our
examples. This optimization problem was then solved using
the CVX software package [6]. The result x̂ is then a scatterer
texture as seen in Fig. 3, which would produce the input
image when convolved with the PSF.

If modeling only the given region is the goal, then this
result achieves this, and can be used in ray-tracing and
with different PSFs to generate different viewing angles and
imaging parameters. However, if a generalization is required
to inpaint larger models and generate arbitrary geometrical
scenes, then the following step of statistically parameterizing
this scatterer texture shall be employed.

D. Scatterer parametrization

We assume the scatterer distribution can be parameterized
for a homogeneous tissue region with a statistical model [3],
the parameters of which can be estimated from the recon-
structed scatterer texture by a typical maximum-likelihood
estimation step. Indeed, the 3 parameters {µ, σ, and r} can
be estimated simply as follows. The number of non-zero
scatterer texels using a threshold ε (set to 0.2 empirically)
gives the ratio r. The mean and the standard deviation of
these non-zero scatterers then yield µ and σ, respectively.

When instantiating a new scatterer texture, one should note
that negative-amplitude scatterer, which are physically not
possible, may be generated by the above normal distribution.
Depending on how these scatterers with negative amplitudes
are treated, the final scatterer statistics may indeed slightly
change. We chose to clamp scatterer amplitudes to zero,
hence slightly lowering the actual value of r in the syn-
thesized texture.

Fig. 4. Our algorithm using a synthesized input and a known PSF. Bottom
row: From the input speckle image we acquire a texture of scatterers and
their distribution. Top row: Using the forward pipeline, we instantiate new
scatterers and create speckle images representing the same tissue.

Fig. 5. Our method used on synthetic input images with varying parameter
values (µ, σ, and r) for speckle generation, simulating different tissue
appearances. The y-axis represents the probability of a texel having the
particular scatterer amplitude denoted on the x-axis.

III. RESULTS

Figure 4 illustrates the algorithmic steps on a sample nu-
merical phantom image of 642 pixels resolution, while using
a 1282 scatterer texture. The input image was generated using
the 3-parameter model and a known PSF of σx=2.1 and
σy=1.6. The scatterer reconstruction in this example takes 47
seconds in Matlab using CVX, and yields simulated speckles
of 75.4 dB peak signal-signal-to-noise ratio compared to the
original known speckles. Visually, the synthesized speckle
image in the top row closely mimics the input speckle
image. The acquired parametrization was Nµ=2.08,σ=1.01

and r=0.11, which closely matches the original parameters
Nµ=2.10,σ=1.00 and r = 0.10.

Figure 5 shows the method applied using the same PSF
as above but to tissue samples simulated with different pa-
rameters – covering a range of near-underdeveloped to fully-
developed speckles. In this figure, a resolution of 1282 was
used for both speckle image and scatterer texture. Differences
in the reconstructed parametrizations and the faithfulness in
the appearance of simulated to input images can be observed
for all combinations of parameters.



Fig. 6. (Left) Female pelvic phantom and (right) the homogeneous tissues
synthesized with our method (using 3 input images). Bottom circular region
is the corner of uterus (not imaged fully due to the low penetration of the
used high-frequency linear probe).

Figure 6 shows an image acquired from a pelvic ultrasound
phantom using an Ultrasonix SonixTouch machine and a
linear array transducer operating at 6.6MHz. The image on
the right shows the homogeneous regions of the phantom
simulated with our method, using three 642 input images to
model tissue parametrizations.

Figure 7 shows an example image from actual human
tissue (from the forearm) acquired at 10MHz. We took a
sample window of 642 pixels from a sufficiently (but not
fully) homogeneous region of an RF image with overall
resolution 256×2496 (lateral/axial), which we converted into
the signal envelope (as shown in Fig. 2). From the images,
we estimated the PSF visually as σx=1.25 and σy=2.5, and
used a 10 × 20 pixels convolution window (for a cutoff at
4σ). The scatterer texture reconstruction resolution was set to
1282. The images shown are drawn in physical aspect ratios.
Despite the uncertainties in the visually-estimated PSF, the
input image (top) is reconstructed successfully, c.f. (center),
by the inverse-problem solution. The main differences of the
instantiated image (bottom) are seen to be due to the non-
homegeneous tissue features, which cannot be captured by a
statistical model. The histogram plot on the right shows that
the statistics of the input, reconstructed, and re-instantiated
speckles match closely. The remaining difference might be
due to the approximated PSF.

IV. DISCUSSION AND CONCLUSIONS

Despite several ultrasound simulation approaches using
scatterer models, to date there had been no methods to
extract or parametrize such models for simulating a particular
tissue type. We presented a novel approach to reconstruct
scatterer representations of tissue for use in ultrasound image
simulation, potentially from different viewing angles and
with different imaging parameters. We also presented a
parameterization of these representations for generating other
samples of the same tissue, that can be used to inpaint
different geometrical models of the same anatomy, e.g. to
fill missing data.

We presented qualitative comparisons of simulated images,
with quantitative distributions as an insight into their realism.
Quantitative metrics for judging the realism of ultrasound

Original

Reconstructed

Synthesized

Fig. 7. Top: A sample from an actual tissue ultrasound image. Middle: The
speckle image simulated from the scatterers reconstructed by the inverse
problem. Bottom: An image simulated from synthesized speckles using
the acquired tissue parametrization. The plot on the right compares the
histograms of speckle intensity (normalized by the number of scatterers).

simulations are not readily available, and user studies with
sonographers may aid us evaluate our techniques in the
future. Methods for estimating the PSF experimentally or
from simulations were not the focus of this work, and will
be studied next. A limitation of our method is that the used
parametrization model can only describe homogeneous and
isotropic tissue which follows a simple normal distribution.
In the future, more elaborate statistical models can be em-
ployed. Also, by extending our method to 3D, these scatterer
models can be incorporated in ray-based simulations with
ultrasound interactions such as reflection and refraction.
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