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Abstract

 

We hypothesize that thalamocortical connections 
after mapping by diffusion tensor imaging can 
serve as surrogate markers of individual 
anatomy, which can then be used for localizing 
specific neurosurgical targets in the thalamus. A 
variety of learning schemes, together with pre- 
and post- processing steps are studied for our 
goal of thalamic nuclei localization. The training 
procedure is performed after non-linear 
registration and probabilistic tractography on 
diffusion magnetic resonance imaging data. Our 
results indicate that thalamocortical connectivity 
data do contain sufficient discriminant 
internucleus information for thalamic nuclei 
localization.  

1.  Introduction 

The human thalamus constitutes a subcortical brain 
structure, consisted principally of gray matter. It serves 
both for information preprocessing and relaying. In 
particular, every sensory system, excluding the olfactory 
one, sends information firstly to the thalamus, which 
retransmits it to selective cerebral cortical loci, via 
specialized thalamocortical connections.  

The thalamus contains both functionally and anatomically 
distinct subparts, the thalamic nuclei, which due to their 
crucial role in the brain function represent an important 
target for the understanding and treatment of numerous 
neurological conditions. Specifically, the Parkinson’s 
Disease, is commonly treated either by thalamotomy or 
thalamus Deep Brain Stimulation (DBS). In the first case, 
part of the thalamus is destroyed, while in the latter the 
target is retuned or inactivated, less invasively, by regular 
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electrical stimulation. In both cases, the thalamic target 
localization is of immense importance for ensuring both 
the efficacy of the method and the reduction of 
complications.  

During image-guided neurosurgical interventions, 
localization can be done either indirectly, using atlas 
registration-based techniques (Otsuki et al., 1994), or 
directly with patient-specific methods (Wiegell et al., 
2003), (Deoni et al., 2006). The former are often 
inaccurate due to intersubject variability and potential 
deformations, while the latter, being usually based on 
local imaging properties, are limited by the lower 
thalamus image contrast offered by the current imaging 
technologies (T1, T2 weighted Magnetic Resonance 
Imaging (MRI) and Diffusion MRI). 

In white matter, diffusion based visualization gains higher 
contrast due to the higher anisotropic properties of neural 
fibers. Additionally, the thalamocortical neural network 
structure is anatomically related to the thalamus 
subdivision in nuclei. Based on these facts, Behrens et al. 
suggested thalamic nuclei segmentation using 
thalamocortical connectivity information (2003). 
Specifically, performing probabilistic tractography on 
diffusion MRI data, they calculated relative strengths for 
the thalamocortical projections. A “winner takes all” data 
reduction scheme was then followed, in which the voxels 
inside the thalamus were clustered based on their 
strongest projection on cortical and subcortical targets.  

In this paper, a supervised learning approach is proposed 
for exploiting the thalamocortical connectivity 
information for thalamic localization. Three standard 
learning schemes, namely the Support Vector Machines 
(SVMs), Boosting, and Random Forest (RF), are 
examined here. Various pre- and post-processing schemes 
are also considered for increased speed and improved 
accuracy. Our main goal is to provide individual, patient-
specific target maps by effectively incorporating 
information from thalamocortical connection patterns. We 
hypothesize that machine learning algorithms are capable 
in relating connectivity-based information with atlas 
based segmentation of nuclei. 
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2.  Methods and Materials 

2.1  Construction of the Thalamus Atlas 

We exploit recent results of the fusion of multiple 
histological atlases to generate a three-dimensional 
statistical model of the human thalamus (Krauth et al., 
2010), Fig.1. The corresponding data from this 3D atlas 
was non-linearly matched with the MR-based visible 
thalamic borders of the MNI152 T1-weighted template 
image. The voxelized 3D volume of ten selected nuclei 
was then taken as ground truth for training data classifiers 
and validating the results.  

Fig. 1: 3D representation of the mean thalamus atlas used 
in the study. References: Morel (2007) Stereotactic Atlas 
of the Human Thalamus and Basal Ganglia. New York: 
Informa Healthcare USA, Inc. 

2.2  Diffusion Tensor Imaging (DTI) and Probabilistic 
Tractography 

For 40 healthy volunteers, diffusion tensor imaging was 
performed with 25 diffusion weighting directions. 
Probabilistic fiber tracing was performed similarly to 
studies describing the connectivity-based parcellation of 
the thalamus (Behrens et al., 2003). Connections between 
the thalamus and 52 cortical and subcortical areas were 
mapped; the latter defined using the Harvard-Oxford 
Cortical Atlas. Such connectivity maps were used as 
training features for the classifiers. 

2.3  Classification 

Assuming each thalamic voxel as a training sample and 
each registered thalamus occupying 9326 voxels in the 
standard space defines our data as 9326*40 samples of  52 
features each.  The size of each nucleus is about 1-11% of 
the total thalamus size. 

Three well-known classification algorithms were 
evaluated for the given task. First, the SVM algorithm 
(Chang and Lin, 2011), which aims to maximize a 
functional margin in a projected higher dimensional data 
space, was examined. Following comparisons of different 
kernels for SVM, the best performing RBF-kernel is 
presented here. Second, boosting based methods were 

considered (Schapire, 1990). This category of methods 
train multiple simple learners (weak classifiers) by 
successively assigning higher weights to misclassified 
instances. The final hypothesis is then given by a 
weighted majority vote of all the weak hypotheses 
calculated. Decision trees were used here with 500 
ensemble learning cycles. The results are given here for 
the best performing Gentle Boost implementation. 
Finally, the Random Forests algorithm was tested 
(Breiman, 2001), which uses a combination of tree 
predictors that are inputted with a sub-sampled training 
set. The sub-sampling is done with replacement. Then, at 
each node a small fraction of the input variables is used 
for its splitting. The decision is given by the votes of the 
individual trees. An implementation with 200 trees is 
presented here. 

In the case of SVM, the normalization of data with a 
logarithmic transform as a preprocessing step resulted the 
SVM to converge significantly faster. Additionally, a 
postprocessing step of 3D median filtering was performed 
in order to smooth the classifiers’ outputs, which were 
then evaluated in a 5-fold cross-validation scheme. 

2.4  Methods Outline 

The overall steps of the study are demonstrated in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 2: Predicting the location of thalamic nuclei based on 
DTI probabilistic mapping of thalamocortical 
connections: flowchart of the procedure. 
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Fig. 3: Confidence Maps. Upper row: Successful case (MDpc nucleus). Lower row: Poorly performing case (MDmc 
nucleus). White border: ground truth by the Thalamus Atlas.                    

3.  Results 

3.1  Confidence Maps 

Having applied the classifier combined with the pre- and 
post-processing steps, confidence maps were constructed, 
visualizing the classifier outputs. In Fig. 3, such 
confidence maps are presented for a successful (high 
Dice’s Coefficient (DC)) and a poorly-performing case 
(low DC), respectively. For these examples, a normalized 
dataset was used for training the Random Forest 
classifier, the decision values of which were then filtered 
by a 3D median filter. For a quantitative assessment of 
such maps, the highest confidence voxels (5% each 
nucleus size) were selected, and the percentage of those 
falling inside the target was calculated (Fig. 4).  

Fig. 4: Success rate for the top 5% confident voxels for 
ten selected nuclei using the post-processed Random 
Forest’s decision values. 

3.2  Comparison on the VLPv nucleus 

In Fig. 5, the performance of SVM, Boosting and 
Random Forests is compared for the case of the VLPv 
nucleus, which is a common neurosurgical target for the 
treatment of the Parkinson’s Disease, both before and 
after postprocessing (3D median filtering). It is shown 
that after post-processing the performance generally 
increases and that in any case the Random Forest 
performs better than the other two learning schemes. 

Fig. 5: Comparison of SVM, Boosting (Boost) and 
Random Forest (RF) for both the original (blue) and post-
processed (green) decision values, for the VLPv nucleus. 
From top left to bottom right: Area Under Curve (AUC) 
(x100), Weighted Accuracy (WA) (%), Dice’s Coefficient 
(DC) (x100), Center of Mass Deviation (COMD) (mm). 

3.3  Comparison on Ten Selected Thalamic Nuclei 

In Fig. 6, the previous section’s two best approaches both 
in terms of speed and performance, Boosting and Random 
Forests are compared for ten selected nuclei. The latter 
performs better in all the cases. 

Fig. 6: Comparison of Boosting (red) and Random 
Forests (blue). Top: Center of Mass Deviation (COMD) 
(mm). Bottom: Dice’s Coefficient (DC). 
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3.4  Most Effective Approach 

The results with Random Forest, the most effective 
classifier for our problem, are presented in Fig. 7.  

Fig. 7: Random Forests: Before (blue) and after Median 
Filtering (red). Top: Center of Mass Deviation (COMD) 
(mm), to Bottom: Dice’s Coefficient (DC). 

4.  Discussion 

Confidence maps, such as the ones presented in Fig. 3, 
could be used by clinicians as a complementary visual aid 
for thalamic nucleus localization. We showed that 
confident voxels fall inside the target with high frequency. 
For all nuclei excluding MDmc, more than 74.5% of 
confident voxels were classified correctly (Fig. 4).  

In a first stage, by studying SVM, Boosting and Random 
Forests for the VLPv nucleus (Fig. 5), we concluded that 
Random Forests generate most accurate results compared 
to the other two. Additionally, SVM requires significantly 
more computational time than Boosting and Random 
Forests, which ran in our tests on the order of hours 
(considering both training and testing). In a second stage, 
Random Forests was tested against Boosting for all 10 
nuclei (Fig. 6). It is seen that the former performs 
superiorly.  Finally, the proposed approach of Random 
Forests was comparatively presented before and after 3D 
median filtering (Fig. 7). In all the cases, median filtering 
improved the results. The mean Center of Mass Deviation 
(COMD) calculated with our approach either before 
(2.4mm) or after filtering (2.6mm) is seen to be smaller 
than the previously reported values  of 3.3mm-4.4mm, of 
the closest work (Deoni et al., 2006). Note that our 
reported Dice coefficients are relatively low, showing that 
even if the presented method is good for localizing the 
nuclei, it does not carry sufficient information in order to 
perfectly delineate them from their surroundings.  
Different inaccuracies can also be attributed to the lack of 
absolute ground truth, for which we use a registered atlas. 

5.  Conclusions 

We have shown that thalamocortical connectivity does 
contain internucleus discriminant information. Such 
information has been exploited for producing confidence 
maps and localizing individual thalamic nuclei. The 
nuclei center of mass are localized more accurately using 
our method compared to the state-of-the-art in the 
literature. Supervised learning approaches rely greatly on 
the availability of an absolute ground truth, the lack of 
which is a common problem. Our research efforts are now 
channeling into boosting our approach’s efficiency by 
enriching the feature vector with additional information 
sources (e.g. local imaging and spatial information) and 
developing an absolute ground truth based on post-
mortem histology preparation and diffusion imaging of 
the same specimen.  
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