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Abstract—Ultrasound Computer Tomography (USCT) is used
to map local wave propagation parameters, such as speed-of-
sound (SoS), as potential imaging biomarkers. Reflector-based
USCT is a technique for the implementation of USCT using
commercial transducer arrays, in contrast to complex USCT
hardware setups requiring suspension in a water bath. In this
work, we model a prototype 2D-matrix transducer and study
reflector-based 3D-USCT reconstruction feasibility and resolution
via numerical simulations. Modeling the ultrasound wavefronts
using rays, we employ 3D-ray tracing methods to compute acous-
tic travel paths on a reconstruction voxel grid, and subsequently
utilize optimization techniques to solve the inverse problem of
SoS reconstruction. We show the feasibility of generating 3D
USCT images and study the resolution for varying tissue SoS
contrast.

Index Terms—Imaging speed-of-sound, ultrasound computed
tomography, ray tracing

I. INTRODUCTION

Ultrasound Computed Tomography (USCT) is a medical
imaging technique, which can complement the conventional
ultrasound B-mode imaging that is cost-effective, real-time and
non-ionizing. USCT images the local ultrasound wave propa-
gation parameters such as speed-of-sound (SoS), attenuation,
and refractive indices, since these parameters may facilitate
differentiation of different tissue compositions and thereby
potentially helping in diagnosis [1]–[4]. Current proposed
USCT systems are based on submerging the target anatomical
structure in a water bath, which is equipped with a large num-
ber of cylindrically/spherically positioned transducer elements
at known locations [5], [6]. Such transmission USCT systems
have great potential for in-vivo breast cancer screening. In
these setups, the transducer elements are operated in multi-
static mode, i.e., after the emission of a wave by a single
element of the transducer array, all peripherally arranged trans-
ducer elements simultaneously receive the RF signals. This
procedure is repeated for each transducer element. Based on
such multi-static data acquisition, the time-of-flight (ToF) for
transducer-receiver combination can be computed by detecting
the first arrival of the wavefront. Such ToF measurements,
as well as their amplitudes and other parameters, allow the
reconstruction of SoS and attenuation maps, similarly to X-
ray computed tomography (CT).

Naturally it is beneficial to develop SoS and attenuation
imaging to be compatible with existing conventional ultra-
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sound transducers in order to avail several logistic advantages
of commercial transducer arrays, also for SoS imaging in
the clinics. This was also the target of several earlier studies
in the literature. Robinson et al. [7] proposed a method for
determining speed of ultrasound propagation in tissue by using
ray-tracing and analyzing the pulse-echo data obtained from a
compound scan. It works based on the following: If the imaged
region does not have the presumed uniform speed, this would
then result in mis-registration of point sources, leading to a
blurred B-mode image. Similarly, Hayashi et al. [8] proposed
a method for measuring in-vivo SoS in the reflection mode by
dynamically correcting delays in receive beam forming until
the operator observes a known anatomical structure without
any blur. This technique was used in measuring the SoS in
liver while using the diaphragm as a reference structure to
observe, until the operator judged it to have the least blur.
In order to automatize this approach, Shin et al. [9] devel-
oped an iterative method using blind convolution to estimate
SoS. Ophir and Caspedes [10], [11] introduced an alternative
method by positioning coplanar single element transducers
such that their beams intersected in the vicinity of the target
medium; from this intersection of beams, an initial ToF is
computed and one at a time these transducer elements shifted
by known distances. The average SoS was calculated from a
least square fit to time vs. known position shifts plot. This
method was later implemented using a conventional linear
array ultrasound transducer [12]. Ophir et al. [13] developed
another method to estimate speed-of-sound by compressing the
soft tissue with a transducer to a known depth and comparing
the temporal changes between pre- and post-compression
pulse-echo sequences. Indeed, many such development also
marked the beginning of elastography, which aims to measure
local strains by imaging compressed tissue.

In the techniques above, the goal was to extract a
homogeneous-equivalent (average) SoS in the region, or part
thereof; often aiming to utilize this in beamforming for sharper
B-mode images. In contrast, Krueger et al. [14] proposed to
reconstruct a SoS map of the tissue by positioning an acoustic
reflector at a known depth as a timing reference for calculating
ToF values robustly when the transducer is operated in multi-
static mode. It was initially proposed to be used as an add-
on to the X-ray mammography compression plate. Despite
following studies in this direction [15], error-prone reflector
delineation and tomographic reconstruction methods have long
hindered accurate and high-resolution SoS imaging with a



Fig. 1. A 2D-matrix array with an acoustic reflector placed at a distance d.
Wavefront arrival is modeled using rays, where each ray path originates from
a transmitting Tx element T(i,j), bouncing from the reflector, and arriving at
a receiving Rx element R(l,m), where i, l ∈ {1..N} and j,m ∈ {1..M}.

reflector. Recently, Sanabria et al. [16] reported reflector-
based SoS imaging using dynamic-programing based reflector
delineation and angular-weighted total-variation regularization
techniques. Thanks to this combination of techniques, they
achieved sharp inclusion delineation, without a need of prior
inclusion segmentation. This method has high accuracy and
resolution compared to earlier reflector-based techniques in
the literature. There is a growing interest and demand for
volumetric ultrasound imaging (3D/4D). We aim to extend the
above 2D reflector-based technique [16] to 2D matrix trans-
ducers for 3D SoS imaging. Feasibility of 3D reflector-based
SoS reconstruction is studied in this paper using numerical
phantom simulations.

II. METHODS

A. Forward problem of sound propagation

A 2D-matrix transducer with NxM elements is operated
in multi-static mode. An acoustic reflector is positioned at a
distance of d from the transducer as in Fig.1. For acoustic
propagation, refractions are ignored and the travel of the
acoustic wave from transmitting to receiving element is mod-
eled using a straight ray. Time-of-flight, ti, of each acoustic
ray i then relates to the slowness s (inverse of speed) along
the traversed ray path as follows:

ti =
∫

pi

s dl (1)

where pi represents the acoustic ray path and l is the traversed
distance. For a non-refracting acoustic path, the first wavefront
from an transducer element transmission Tx reflected from
the reflector arrives at any receiving element Rx following
the (shortest) path being reflected at the mid-point of the line
segment between Tx and Rx element locations projected on
the reflector.

To cast this as a tomographic reconstruction problem, the
relation above can be discretized on a Cartesian 3D voxel grid
as

ti =
Ni

∑
n=1

sklik (2)

where sk represents the slowness in the k’th voxel along the
i ray of Ni voxels, and lik represents the partial acoustic path
length of ray i within this k’th voxel. Collocating Eq.2 for each
ray path along all Tx-Rx combinations, the forward-problem of
sound propagation can then be represented with the following
system of linear equations

Ls = t (3)

where t is the column vector of ToF values along all ray paths,
s is the column vector of slowness values for all grid voxels,
and the system matrix L encodes the discretized ray integrals
for each ray onto the voxel grid. Note that L is constant for
given transducer geometry and reflector position.

B. Inverse problem of SoS reconstruction
Given ToF measurements, one can then solve an inverse

problem to reconstruct local slowness, and thereby an SoS
image. If the number of ToF measurements (Tx-Rx combi-
nations) are much higher than the number of voxels in the
reconstruction grid, then an optimal solution may be calculated
using least squares, as follows

ŝ = argmin
s
||Ls− t||2 . (4)

However, in most practical scenarios based on the Tx-Rx pairs
and the definition of the reconstruction grid, this problem eas-
ily becomes ill-posed, with reconstructions highly susceptible
to noise in the ToF measurements. System conditioning is
affected by the acoustic rays only traveling through a small
number of voxels for each measurement. Additional source
of errors negatively affecting robustness include: (1) Straight
acoustic path assumptions may fail due to refractions and SoS
inhomogeneities; (2) assumed reflector depth/orientation may
be incorrect; and most importantly, (3) ToF measurements by
the reflector delineation algorithm may contain small inaccura-
cies as well as grossly-incorrect outliers. To ensure robustness,
we enforce spatial regularization as follows:

ŝ = argmin
s
||Ls− t||2 +λ ||Ds||n (5)

where D is the difference operator encoding discrete deriva-
tives in all three axes, n is the regularization norm, and λ is
the regularization weighting. n=2 is the well-known Tikhonov
Regularization (TR) that quadratically penalizes differences
between neighboring voxels. Favors smaller gradients, this
prevents sharp edges between different image regions, pro-
ducing smooth (blurred) images. In contrast, with n=1 known
as the Total Variation Regularization (TVR), sharp and smooth
gradients are equally weighted, helping in preserving edges.

The ray-tracing algorithm for populating the sparse system
matrix L was implemented in Matlab. Ray projections within
each traversed voxel were computed using a ray-box intersec-
tion algorithm [17].



Fig. 2. Cross-sections of numerical phantoms used for testing the proposed
reconstruction method. Given 1540 m/s background, (a) the feasibility phan-
tom (FP) with a �6 mm cylindrical inclusion of 4% SoS contrast, (b) a
contrast phantom (CP) with �3 mm inclusions of 0.5%, 2%, and 4% SoS
contrasts, and (c) resolution phantom (RP) with 3% SoS contrast inclusions
placed horizontally and vertically next to each other.

III. NUMERICAL EXPERIMENTS

We modeled a 2D-matrix transducer with 32x16 elements
of 0.75 mm pitch in both directions. The acoustic reflector
is considered to be positioned at 30 mm depth from and
in parallel to the transducer surface. For different numerical
phantoms, we simulated ToF values using the forward problem
in Eq.(3), by assuming straight sound paths. Then, for different
numerical phantoms and simulated noise studies, SoS images
were reconstructed by solving the inverse problem using
optimization methods in the CVX package [18]

Figure 2 illustrates the numerical phantoms that we used in
this work. To demonstrate the feasibility of 3D SoS imaging,
we generated a feasibility phantom (FP) with a �6 mm cylin-
drical and spherical inclusions of 4% SoS contrast with respect
to a background SoS value of 1540 m/s. This is reasonable
range of SoS contrast because diseased soft tissue’s sound
of speed ranges withing 5% of this background value, with
pathologies being often stiffer. Next, in order to study the
contrast capability, we used a numerical contrast phantom
(CP) consisting of �3 mm cylindrical inclusions of 0.5%, 2%
and 4% SoS contrast. To evaluate resolution, we generated a
resolution phantom (RP) with nearby as well as farther away
inclusions, both axially and laterally, as seen in Fig. 2(c).

IV. RESULTS AND DISCUSSION

Figure 3 illustrates a rendering of the reconstructed volume
and cross-sectional image slices from the single cylindrical
inclusion feasibility phantom FP, using Tikhonov and TVR
regularizations. For volume renderings in all reconstruction
figures, a linear alpha (transparency) map is used correspond-
ing to the color-bar range of values from 1540 to 1601.
The reconstructed images have mean(±std) SoS values of
1600.4(±3.3) m/s and 1540(±0.5) m/s, respectively, for the in-
clusion and background regions by using TVR; in comparison
to 1584.3(±6.2) m/s and 1540.6(±4.8) m/s for using TR. By
comparing (b) & (d) it is seen that TVR helps in maintaining
the sharp boundaries in the reconstructed volume.

Figure 4 illustrates a rendering of the reconstructed volume
and cross-sectional image slices from the single spherical

Fig. 3. 3D volume renderings (left) and cross-sectional images (right) from
reconstructed volumes of single-inclusion feasibility phantom FP, using TVR
(upper row) and TR (lower row).

inclusion feasibility phantom FP, using TVR regularizations.
SoS values of 1601(±0.004) m/s and 1540(±0.00049) m/s
were reconstructed, respectively, for the inclusion and back-
ground regions by using TVR. In these ideal conditions, the
reconstruction is seen to be very accurate.

Figure 5 shows the reconstructed images of CP. It can be
seen that even the lowest 0.5% SoS contrast was reconstructed
faithfully. SoS values were found to be 1547.4(±1.1) m/s,
1568.5(±5.5) m/s and 1600.1(±5.8) m/s, respectively, in the
0.5%, 2% and 4% SoS inclusions, with 1540.1(±0.8) m/s in
the background.

Figure 6 shows the reconstructed SoS images for RP. It
can be seen that both horizontal and vertical inclusions are
separable, except for the two end-slices where there are not
sufficient number of overlapping observations.

V. CONCLUSIONS
In this simulation study, we have presented a formalized

framework for reflector-based 3D reconstruction of local
speed-of-sound using 3D ray-tracing methods to compute
acoustic ray projections on a voxel grid. Under ideal conditions
with no acoustic refractions and no noise in time-of-flight
estimations, both contrast and resolution of reconstructions
were shown to be relatively good.



Fig. 4. 3D volume renderings (left) and cross-sectional images (right) from
reconstructed volumes of single-inclusion spherical feasibility phantom (FP),
using TVR.

Fig. 5. 3D volume rendering (left) and cross-sectional images (right) from
the reconstructed volumes of the contrast phantom CP using TVR.

Fig. 6. 3D volume rendering (left) and cross-sectional images (right) from
the reconstructed volumes of the contrast phantom CP using TVR.
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