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Abstract

In this paper we present a novel post-processing technique to detect and correct inconsistency-based
errors in non-rigid registration. While deformable registration is ubiquitous in medical image computing,
assessing its quality has yet been an open problem. We propose a method that predicts local registration
errors of existing pairwise registrations between a set of images, while simultaneously estimating corrected
registrations. In the solution the error is constrained to be small in areas of high post-registration image
similarity, while local registrations are constrained to be consistent between direct and indirect registration
paths. The latter is a critical property of an ideal registration process, and has been frequently used to asses
the performance of registration algorithms. In our work, the consistency is used as a target criterion, for
which we efficiently find a solution using a linear least-squares model on a coarse grid of registration control
points. We show experimentally that the local errors estimated by our algorithm correlate strongly with true
registration errors in experiments with known, dense ground-truth deformations. Additionally, the estimated
corrected registrations consistently improve over the initial registrations in terms of average deformation error
or TRE for different registration algorithms on both simulated and clinical data, independent of modality
(MRI/CT), dimensionality (2D/3D) and employed primary registration method (demons/Markov-random-
field).

1 Introduction

Image registration is a key technology in medical image analysis. It enables applications such as atlas-based
segmentation [1], statistical model building, and automatic landmark detection. In many of these tasks, high
registration accuracy is critical, but difficult to achieve since the registration problem is ill-posed [2]. Common
approaches use multi-resolution grid hierarchies [3] or transitive/symmetric energy terms [4, 5] to enable ro-
bust pairwise or triplet registration. Group-wise registration methods [6, 7] are also often employed for robust
registration . Still, there is no guarantee that even a robust registration method will yield accurate results in indi-
vidual cases. It would therefore be immensely valuable if the accuracy of non-rigid registrations in an existing
work-flow could reliably be estimated.

In this context, it was shown that voxel similarity metrics are indeed not good indicators of registration
quality due to homogeneous tissue regions, partial volume effects, and anatomies of similar appearance [8, 9].
While independent labelling of landmarks or anatomic regions can be used to measure registration fidelity, this
requires invaluable time and effort of trained medical personnel, which an automatic registration was supposed
to avoid in the first place. To estimate the uncertainty in single pair-wise registrations, different methods such as
the Cramér-Rao bound [10] or bootstrap re-sampling [11] have been proposed, increasing the complexity of a
registration algorithm by orders of magnitude. Other studies estimated registration accuracy based on intensity
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Figure 1: Illustration of an inconsistent registration (left), the residual ~ri,j,k(p) indicates the amount of inconsi-
tency. Multiple such loops (center) create redundancy that is exploited in CLERC. For instance, the registration
in bold is part of 6 such individual loops (right) in this simple example.

measures, e.g. using the multiple Gaussian state-space [12] or voxel-statistics based on active appearance models
from registered images [13].

A different line of research investigates the consistency of multiple registrations as a measure of registration
fidelity [14, 15, 16, 9, 17]. The most common application of this approach has been the evaluation and com-
parison of registration algorithms by computing the residual norm of inconsistencies in pair-wise registrations.
Recently, a method was proposed to exploit redundancy in multiple registration circles for estimating the spatial
location and magnitude of errors in pair-wise registrations [17]. This method uses a simplified assumption of
registration error accumulation, based on a point-wise addition/multiplication of error magnitudes, in order to
estimate a dimensionless measure for local registration error, which was validated in a basic synthetic setup.
However, it is apparent that such error accumulation assumptions cannot model actual errors of real-world sce-
narios, as also demonstrated later in our results and comparisons.

In this paper, we introduce a novel method of detecting local error magnitudes and directions, while effi-
ciently correcting such local errors in non-rigid registration. We dub this CLERC for correcting local errors
using registration consistency. Other work in the literature such as [17] suggested approximating spatial errors
assuming their linear accumulation through consecutive registrations. This merely yields (direction-less) values
that may correlate with the error magnitudes. In contrast, our method estimates error vectors with their ex-
pected magnitude. We formulate this as a linear least-square problem of minimizing registration inconsistency,
which we define based on registration transitivity. Our method requires neither a reference image nor invert-
ible deformations and instead it works as a post-registration filter that can be applied to the collective set of all
pairwise registrations obtained from any deformable registration method. CLERC then computes estimations of
registration errors and corrections efficiently on a coarse grid of control points.

2 Method

We define a registrationR as the set of all pairwise registrations between images of a setX = {X1, X2, · · · , XN}.
An image X is a function that maps points in the D-dimensional spatial domain Ω to a space F of image in-
tensities, e.g. CT Hounsfield units. A non-rigid deformation T is a mapping from Ω to Ω which is based on a
displacement field D such that T (p) = p + D(p) for all points p in Ω. Note that both X and D are commonly
defined on a discrete (Cartesian) regular grid, where non-grid values can be obtained by interpolation. In this
notation, deforming an image is a function composition X ◦ T = X(T ) . Composing two deformations is also
a function composition: T2 ◦T1(p) = p+D2(T1(p)) +D1(p). As introduced in [14], a perfect registration leads
to consistent correspondences over the entire set. Multiple definitions for consistency are used in the literature,
most notably inverse consistency (or symmetry), transitivity [18] and circle consistency [17]. In our method we
use transitivity as a measure of consistency, since it yields information cues from all associated triplets as illus-
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trated in Fig. 1(right). In this paper, we use the transitivity as a goal function in order to estimate the local errors
in a set of given non-rigid registrations, computed using an arbitrary pair-wise registration method. Assume that
each observed Ti,j ∈ R, which registers image Xi to Xj , is composed of an unknown true deformation T̂i,j and
an unknown error displacement field ∆̂i,j such that T̂i,j + ∆̂i,j = Ti,j . CLERC finds an estimate for all T̂ and
∆̂ by minimizing the inconsistency of deformation triplets. The transitivity-based consistency criterion can be
defined as follows:

C({T̂ }) = 1/ZC
∑
i

∑
j 6=i

∑
k 6={i,j}

∑
p

||T̂k,j ◦ T̂i,k(p)− T̂i,j(p)||2, (1)

where ZC is a normalization constant (the number of all summands). To incorporate image-based information,
we employ the assumption that errors ∆̂ are relatively small in areas of higher local post-registration similarity.
Intuitively, minimizing the criterion

E({∆̂}) = 1/ZE
∑
i

∑
j 6=i

∑
p

||Ψij(p)∆̂i,j(p)||2 (2)

penalizes large errors in areas of high post-registration similarity Ψij(p), which is the local similarity between the
transformed image Xi(Ti,j) and Xj . We use local normalized cross correlation (LNCC) [19] as such similarity
metric. We set Ψi,j = (0.5 + 0.5 · LNCC (Xi (Ti,j) , Xj , σ))γ , where σ is the window size and γ controls the
distribution of this weight.

The CLERC optimization problem is then formulated as follows:

min
T̂ ,∆̂

C({T̂ }) + λerrE({∆̂}) + λdefF({T̂ }, {∆̂}) (3)

where λerr weights the influence of the local error term, and λdef acts as a Lagrange multiplier enforcing the
the definition of the observed deformation being the true deformation plus the error:

F({T̂ }, {∆̂}) = 1/ZF
∑
i

∑
j 6=i

∑
p

||T̂i,j(p) + ∆̂i,j(p)− Ti,j(p)||2 (4)

For an efficient solution, we approximate C by substituting the unknown true deformation T̂i,k with the
observed deformation Ti,k in the displacement composition as:

T̂k,j ◦ T̂i,k − T̂i,j = D̂k,j(T̂i,k) + D̂i,k − D̂i,j
≈ D̂k,j(Ti,k) + D̂i,k − D̂i,j . (5)

With a Lagrange multiplier λsim for the constraint in (3), this optimization problem is a linear least-squares
problem of the form min | ~A~x − b|2, where x is a vector containing all displacement and error variables, i.e. T̂
and D̂. A is a structured sparse matrix in which each row corresponds to one inner sum from either C, E or F .
A then has the following non-zero entries:

• 1/ZC at positions corresponding to the constraints in (1);

• λerr/ZEΨi,j(p) at positions to the corresponding the constraints in (2);

• λdef/ZF at positions corresponding to the constraints in the last term (4);
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Figure 2: Two samples (each row) synthetic data with (left) large and (right) small errors. (a) target image,
(b) erroneously deformed source image, (c) known ground-truth deformation error, (d) CLERC estimate of
deformation error and (e) source image deformed with estimated true deformation. Hue corresponds to the
orientation and saturation to the magnitude of errors.

b consists of zeros for all terms corresponding to (1) and (2), and of the observed displacements for the rows
corresponding to the rows in (4). In this formulation, the D-dimensional components of the displacement and
error vectors ∆̂(p) and D̂(p) are independent. We therefore find a least-squares solution for each of the D
systems of equations in (3) using the reflective Newton trust-region method [20], which was chosen due to its
computational and memory efficiency. As commonly utilized in medical image registration, we solve (3) on
a coarse grid for efficiency and then interpolate the results. We use linear interpolation of the variables when
D̂k,j(Ti,k) is not on a grid point. In all our experiments, we observed ~A to be of full rank.

3 Experimental Results

We evaluate our method in three experiments, starting from a fully controlled environment using synthetic data,
where we can have known ground-truth and demonstrate the utility of our method. We then present results on
clinical datasets.

3.1 Simulated Deformations and Error

Nine 199×199 synthetic images with known pairwise registrations were first created by deforming a reference
image. Simulated, random errors were then added to all registrations. We used two different parameterizations
of the error-generation process, namely few large errors (expA) and many small errors (expB). The mean mag-
nitude of displacement errors is 15 px for expA and 5 px for expB. The number of errors in each registration also
follows a normal distribution, with the mean error frequency being 1 for expA and 20 for expB. Examples of
typical error distributions can be seen in Fig. 2. We then ran CLERC for each setup independently, on a coarse
grid of 25 × 25 control points. We present the average deformation error (ADE) defined as the mean of the
magnitudes of local differences between estimated and known ground-truth deformations. We also report the
inconsistency C. Tab. 1 shows the improvements in ADE for both experiments, as well as a significant reduction
in registration inconsistency in both cases.

3.2 Simulated Data, Real Registrations

For the second experiment, we simulated medical images with known correspondences. We used 19 mid-saggital
slices of brain MRI with 481×374 px2 resolution and 0.3 mm2 spacing. We first registered one randomly chosen
image to the remaining 18 images using a Markov-random field (MRF) based registration technique [21]. The
computed registrations were then used to deform the source image. Subsequently, the 18 deformed images plus
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Table 1: Average deformation error (ADE), target registration error (TRE) and inconsistency C1 in pixels (syn-
thetic data) and mm (clinical data) for the experiments using simulated deformations before and after CLERC.

synthetic data 2D MRI 3D CT

expA expB demons MRF demons MRF

ADE C ADE C ADE C ADE C1 TRE C TRE C

Post-registration error 3.33 5.34 0.67 1.47 3.50 2.53 1.92 1.85 9.62 8.14 5.25 5.67
Improved by CLERC 0.99 1.13 0.39 0.42 2.66 0.86 1.38 0.65 7.78 1.60 4.96 1.34

(a) (b) (c) (d) (e)

Figure 3: Registration errors of MRF (top) and demons (bottom) on the semi-simulated data. (a) target image,
(b) deformed source, (c) true registration error, (d) estimated registration error, (e) source image deformed by
the estimated true registration. Hue corresponds to orientation, and saturation to the magnitude of errors.

the source image were used as a new dataset. This dataset thus not only exhibits true anatomical variability,
but also the ground-truth registrations are then known from the deformation process or can be analytically
computed. We used diffeomorphic demons [22] and MRF-based registration [21] to mutually re-register all
19 images, resulting in 342 registrations each. Subsequently, we solved CLERC for each of these sets using a
coarse grid with 8mm spacing. Quantitative results are given in Tab. 1. It is seen that ADE improves by over
25%, while the inconsistency is reduced considerably. We show one example case for each registration method
in Fig. 3. We also compare our estimates with our own implementation of the AQUIRC method presented in
[17]. Their method yields a unit- and direction-less measure of local error magnitude that can be correlated with
the true local error magnitude. For the demons registration, the error magnitude predicted by ACUIRC has a
correlation coefficient of 0.47, while ours yields 0.74. For the MRF registration, the correlation coefficients are
0.64 (AQUIRC) and 0.85 (CLERC).

3.3 Clinical Data

The last experiment was performed using a dataset of 15 clinical 3D CT scans of the head of different individuals,
with 160×160×129 px3 resolution and unit voxel spacing. All images were mutually registered using demons
and MRF-based registrations, and post-registration TRE was computed using 12 manually placed landmarks on
the jawbone and the skull. In this inter-patient experiments, dense correspondences and thus consistency was
not guaranteed. In fact, the presence and the number of teeth vary substantially among the elder population in
this dataset. Similarly as above, we solved CLERC using a coarse grid with 8 mm spacing. The results are given
in Tab. 1, in which a significant improvement in post-registration TRE using CLERC is observed.
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Figure 4: Influence of consistency weight on ADE and inconsistency achievable in CLERC in expB (left). The
achievable improvement by using CLERC is seen to converge at increased number of images used for solving
CLERC (right). Each data-point is from an average of 10 repeated experiments with random images with the
variability shown by error bars.

3.4 Discussion

We have demonstrated experimentally that CLERC can reliably detect local errors in a fashion that also allows
for correcting such errors. This discriminates it from methods such as AQUIRC [17], which use a simplified
error generation model and are thus only able to solve for a dimension-less measure of error magnitude. In
contrast, our method yields an estimate of the true magnitude and orientation of the error. CLERC is also robust
with respect to the parameterization, which is illustrated by the fact that all results presented in this work were
achieved using the same parameters λerr = λdef = 20. We only varied the window size for LNCC slightly to
take into account the imaged anatomy/structure. Accordingly, σ was 1 px for the synthetic examples, and 1 mm
for the clinical images, while γ was 8 for the 2D MR images and 6 otherwise. Note that further experiment-
specific improvement is possible, in particular λerr can be used to incorporate prior knowledge on the expected
error. Overall, CLERC was shown to reduce the average absolute registration error by up to 72% for simple
simulated errors and by up to 19% for the clinical data we presented.

Computation time and memory requirement of CLERC are determined by the linear system in (3). Despite
being sparse, this linear system may still become quite large for fine grid resolutions or with increased number
of images. Using the proposed solver, the linear system for each component of the 3D experiment can be
solved relatively fast in approximately 5 minutes. Nonetheless, the memory consumption is the bottleneck of
our algorithm. For the presented experiments, we limited the maximum required memory at 32 GB in order to
avoid swapping to hard-drive, which otherwise slows down computation significantly. For a limited memory
footprint, one can resort to coarser grid resolutions. Fig. 4(right) indicates a pattern of convergence in the
achievable improvement using CLERC with increasing number of images. This is a promising observation that
a small, affordable subset of images might indeed already yield accurate error estimations.

Note that the accuracy of the approximation in (5) deteriorates with increasing post-registration error as
can be seen in the experiments with clinical data. A possible solution is to solve CLERC repeatedly, thereby
improving the approximation as long as the overall error becomes smaller. Encouraged by our preliminary
results following this approach, further investigations will be carried out in this direction in the future.

4 Conclusions

In this paper, we have presented a novel method CLERC to predict spatial location, magnitude and orientation
of inconsistency-based errors in any non-rigid registration. This is achieved by using an error term that jointly
estimates consistent registrations and local registration errors over a set of images registered pairwise. To the
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best of our knowledge, CLERC is the first method that detects inconsistency-based errors as vectors such that
these can also be corrected subsequently.
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