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B-Mode Ultrasound Image Simulation
in Deformable 3D Medium
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Abstract—This paper presents an algorithm for fast image
synthesis inside deformed volumes. Given the node displacements
of a mesh and a reference 3D image dataset of a pre-deformed
volume, the method �rst maps the image pixels that need to be
synthesized from the deformed con�guration to the nominal pre-
deformed con�guration, where the pixel intensities are obtained
easily through interpolation in the regular-grid structure of the
reference voxel volume. This mapping requires the identi�cation
of the mesh element enclosing each pixel for every image frame.
To accelerate this point location operation, a fast method of
projecting the deformed mesh on image pixels is introduced in
this paper.

The method presented was implemented for ultrasound B-
mode image simulation of a synthetic tissue phantom. The
phantom deformation as a result of ultrasound probe motion
was modeled using the �nite element method. Experimental
images of the phantom under deformation were then compared
with the corresponding synthesized images using sum of squared
differences and mutual information metrics. Both this quanti-
tative comparison and a qualitative assessment show that that
realistic images can be synthesized using the proposed technique.
An ultrasound examination system was also implemented to
demonstrate that real-time image synthesis with the proposed
technique can be successfully integrated into a haptic simulation.

Index Terms—ultrasound image simulation, sonography train-
ing, B-mode image synthesis, deformation slice rendering, medi-
cal image simulation

I. INTRODUCTION

ULTRASOUND is a non-invasive and safe medical imag-
ing modality and hence one of the most commonly

used examination tools. However, image anisotropy and the
existence of various signi�cant artifacts cause the need for
extensive echographer training. Current standard education is
in the form of supervised examination of real pathologies
during clinical practice. Despite its many advantages, this
approach involves signi�cant time expenditure of quali�ed
personnel and can only be performed when a supervisor and a
patient are available. Furthermore, training on rare pathologies
poses a problem. Indeed, students have the chance to learn
only 80 % of the important pathologies during one-year of
standard education [1]. This need for ultrasound examination
training has motivated several computer-based simulationen-
vironments [2]. In addition to examination, training of med-
ical procedures that utilize ultrasound imaging, e.g. prostate
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Fig. 1. An image slice (a) before and (b) after a deformation caused by
probe pressure; and (c) illustration of deformation during needle insertion.

brachytherapy and breast biopsy, can also signi�cantly bene�t
from such simulation techniques. The ability to mentally
register two-dimensional (2D) image slices within the three-
dimensional (3D) anatomy is a non-trivial skill required by
any sonographer. Real-time ultrasound simulators have the
potential to accelerate and improve such training.

In a typical ultrasound simulation scenario, the user must
be presented with an image slicing the target anatomy. In an
actual diagnostic or operative procedure, such target anatomy
is often deformed under various forces, such as ultrasound
probe contact, as illustrated in Figures 1(a) and 1(b). Note
that an ultrasound probe only compresses the surface of the
tissue, whereas there exist other medical tools that further
manipulate the tissue internally, e.g. percutaneous needles as
in Fig. 1(c). A realistic image simulation should take such
tissue deformations into account in order to deliver an im-
mediate representation of the anatomy in its current deformed
con�guration.

Modeling of tissue deformation has been studied extensively
in the literature [3]–[6]. Common techniques such as mass-
spring models and the Finite Element Method (FEM) use a
discretization (mesh) of the tissue volume and corresponding
elasticity parameters to approximate its behaviour under load.
In general, these model parameters are abstracteda priori and
used with given forces in real-time to compute deformation,
which is commonly expressed as a set of displacements of
the given mesh nodes. To enable a real-time computation
of deformation, this discretization often has a signi�cantly
coarser structure than the typical resolution of medical imaging
modalities. This paper presents an image generation technique
in deformed 3D meshes and addresses the computational
challenges for real-time performance. Realistic simulation of
ultrasound, which is a real-time imaging modality, is the
primary target application of our image generation technique.
While the image slicing methodology we propose is described
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for B-mode ultrasound, it also applies to other modalities such
as MR and CT.

The paper is organized as follows. First, our choice of
interpolation procedure, which consists of �nding the im-
age pixel intensities by referring their positions back to the
nominal pre-deformed con�guration, is introduced. Then, its
application within meshes that are deformed based on the FEM
is outlined in 2D. Next, the pixel location problem that arises
in such a scheme and our proposed numerical treatment for
this are presented in 3D. In the results section, the proposed
technique is demonstrated for real-time ultrasound synthesis in
a tissue-mimicking ultrasound phantom and in-vivo thigh data
deformed by the ultrasound probe itself. A discussion of the
limitations and possible future extensions conclude this paper.

II. PREVIOUS WORK

An ultrasound simulator necessitates rapid and realistic im-
age rendering of deformed tissue in response to probe or tool
manipulation by a trainee. There exist two major approaches
for simulating B-mode ultrasound images,the generative ap-
proach and the interpolative approach. The former simulates
the ultrasonic wave propagation by using accurate models of
the probe, the tissue scatterers, and the wave interaction [7],
[8]. Generating a single B-mode frame using this technique
takes hours. Thus, this approach is not suitable for real-time
applications. Furthermore, in practice it is not possible to
extract an exact scatterer model of a complex medium such as
the tissue and hence the images generated with this technique
typically look arti�cial. The latter approach generates images
by interpolating from pre-acquired images of the volume.
While interpolation directly from arbitrarily-oriented B-scans
was demonstrated in [9], the construction of a regular-grid
reference volume, called3D ultrasound reconstruction[10],
[11], is commonly the preferred method because it enables
data processing with off-the-shelf algorithms. UltraSim [12],
which is one of the �rst commercial ultrasound image simula-
tors, and several others [13]–[18] follow this latter approach.
Refer to [2] for a review on ultrasound training simulators.

Note that anisotropic image artifacts, such as shadowing and
reverberation in ultrasound, may not be reproduced correctly
by an interpolation scheme due to their direction-dependent
characteristics. One attempt to remedy this shortcoming is
to acquire real ultrasound images of the volume at several
positions/orientations. Subsequently, for a given probe location
during simulation, the image that corresponds best with that
orientation can be selected from that database and shown to
the user. This is not feasible in practice due to the unlimited
number of possible probe and/or medical tool con�gurations
during a simulation [1].

Since a generative simulation approach with a full-blown
wave interaction model is not feasible for real-time applica-
tions, some recent work has focused on developing heuristic
models that can be computed in real-time. Some researchers
looked at the problem in the context of computer graphics,
such as �rst texture mapping different tissue regions by
pre-computed backgrounds, then imposing a Gaussian noise
to generate an arti�cial speckle pattern, and �nally apply-
ing a depth-dependent radial blurring to simulate a convex
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Fig. 2. Online and of�ine steps of the proposed interpolation-based
simulation.

probe [19], [20]. Others proposed processing imaginary rays
mimicking ultrasound using heuristic interaction functions
de�ned for coarse (pixel level) tissue representations with
abstracted parameters, namely attenuation, re�ection, and scat-
terer power [1]. Unfortunately, the adjustment of such parame-
ters was not addressed in this work. Deriving parameters from
CT data was also proposed in [21] and in [22], separately, in
order to generate ultrasound images by processing CT images.
Although such pseudo-generative methods for echography
simulation are appealing, due to the substantially complex
nature of actual wave interactions, it is extremely dif�cult to
generate even common ultrasound phenomena, such as speckle
formation, using these methods, let alone realistic images. As a
result, existing simulators that are studied for clinical training
scenarios [2], [12], [13], [15]–[18] are interpolation-based.

In many medical procedures, such as prostate brachyther-
apy [5], brain surgery, or breast biopsy, signi�cant deformation
is caused by medical tools or by the ultrasound probe. In
certain applications, such as in the diagnosis of deep-vein
thrombosis (DVT), deformation observed in ultrasound images
during deliberate probe indentation contains essential diagno-
sis information. Fast synthesis of ultrasound images in soft
tissues under deformation will facilitate the developmentof
training simulators. With this goal, a DVT diagnosis simulator
was proposed in [18]. It simulates the probe pressure by �rst
slicing an image from the 3D ultrasound data set and then ap-
plying a 2D elastic deformation to this image using quadtree-
splines. This 2D in-plane deformation is pre-computed of�ine
by registering the segmentations of pre-deformed and post-
deformed anatomy of a test case [23].

Real-time ultrasound image slicing using physically-valid
3D deformation models has not been addressed in the litera-
ture. Our work is motivated by this need. A recent work applies
similar techniques to generate ray-traced volume rendering of
a deformable liver model [24].

For a deformed-volume image slicing strategy, as illustrated
in Fig. 2, a reference volume dataset is required. The reference
image volume can either be obtained using a 3D ultrasound
probe or, alternatively, it can be constructed from individual
2D B-mode slices. This 3D ultrasound reconstruction has been
studied extensively in the literature [10], [11], [25], [26]. Given
this reference volume and a mesh-based deformation model,
the image synthesis component (Fig. 2) of an ultrasound sim-
ulator is the subject of this paper, preliminary results of which
were presented earlier in [27], [28].
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Fig. 3. Voxel data and image plane in (a) nominal, (b) post-deformation,
and (c) undeformed con�gurations in 2D (circles denote the image pixels and
squares denote the volume data voxels).

III. METHODS

Let the spatial voxel locations of ani � j � k 3D regular
grid beV 0, where the superscript zero refers to this being the
initial (time-zero) con�guration of these voxels. Assume that
V 0 are the locations of a given reconstructed volume, in other
words, the locations at which the intensities (also known asthe
gray-values) I 0(V 0) are knowna priori (see Fig. 3(a)). Note
that the illustrations in Fig. 3 are given in 2D for the ease of
presentation, although they represent 3D concepts.

Let V 0 be transformed toV by the deformationf (�) at a
given simulation instance as follows:

V = f
�
V 0�

(1)

as shown in Fig. 3(b). Throughout this paper, these two states
V 0 andV are referred as the pre-deformed and the deformed
tissue con�gurations, respectively.

Consider an image, formed by a set ofn planar equidistant
pixels P, cutting this deformed volumeV . Such an image
is shown with circles in Fig. 3(b). Synthesizing this image
involves �nding the immediate intensity valuesI (P) at these
n pixel locations for every image frame to be displayed on the
screen. Note that this operation has a lower bound of
 (n).
Indeed, any algorithm processing an entire image (even just
simply displaying it on screen) needs to access alln pixels
proving this lower bound.

A. Accounting for the deformation

One approach to the image synthesis above is to �rst
compute the deformed voxel locationsV and then to �nd
(interpolate) the pixel intensitiesI (P) within the known
values of I (V ) = I (f (V 0)) . Note that similar deformation
computations are employed by common elastic registration
techniques [29], [30].

As seen in Fig. 3(b), the major disadvantage of the ap-
proach above is that the deformed voxelsV no longer lie
on a regular-grid structure. Consequently, computationally-
expensive scattered-data interpolation techniques are needed.
Another disadvantage is the need to transform the entire voxel
volume fromV 0 to f (V 0) for each image frame. This is not
practical. Indeed, the interpolation step does not demand the
entire volume, since only the voxelsnear the image pixels
have an effect on their intensity valuesI (P). Therefore, it
is theoretically possible to compute only the deformation of
such nearby voxels—a small subset ofV—as required by the
particular interpolation technique used. Hence, if this approach

is to be used, an effective way of identifying this subset is
needed. Determining computational bounds for such a method
is dif�cult, since this subset is not �xed and it changes with
both the deformation and the image location.

Due to the above disadvantages, the following approach
of �rst mapping the image pixel locations back to the pre-
deformed con�guration and then interpolating the regularly-
spacedI 0(V 0) at theseundeformedpixel locations is proposed
in this paper. For an invertible deformationf , the pixel
locationsP can be mapped to the reference volume as:

P0 = f � 1(P) : (2)

An illustration of suchundeformedpixels with the reference
volume voxelsV 0 can be seen in Fig. 3(c). Subsequently, the
pixel intensitiesI 0(P0) at these nominal pixel locations are
interpolated fromI 0(V 0).

With this method, the required interpolation is on a regular-
grid of known values, which enables the use of well-studied
simple and fast interpolation techniques. Furthermore, asop-
posed to the former approach, the inverse deformation needs
to be computed only for the image pixels, which yields a
�xed number of computations for the synthesis of each frame
regardless of the deformation and the image location.

B. Image Pixels in an FEM Tessellation

Many deformation models employ a mesh to simulate
displacements during deformation. One of the most common
methods for tissue deformation computation is the FEM, in
which tessellations are typically much coarser than medical
imaging resolutions due to computational constraints. Mesh-
based models simulate deformation in the form of node
displacements of the overlaid mesh, so the deformationf
is only de�ned at the nodes. The displacement of other
locations within the mesh can be approximated from these
node displacements. For example, for tetrahedral meshes,
barycentric coordinates can be used for this purpose. Consider
the situation in 2D, where an imageP slices an object
deformed under constraints shown with the arrows in Fig. 4(a).
For each image pixelPi (i 2 1::n), once its barycentric
coordinates with respect to the deformed elementes enclosing
this pixel are found, they point to the correspondingP0

i
in the pre-deformed con�guration (details in Section III-D).
Accordingly, for a computed mesh deformation and a given
probe position/orientation, our image frame synthesis consists
of the following basic steps:

8i 2 f 1::ng
I. Find the elementes enclosingPi

II. Find the locationP0
i using its barycentric coordinates

and the node displacements ofes

III. Interpolate the given dataI 0(V 0) at P0
i

Figure 5 presents a �owchart showing the data �ow between
these steps and the data interaction with the deformation
model.

On the one hand, note that steps II and III above are
constant-time operations, for which there exist well-studied
fast implementations. On the other hand, thepoint location
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Fig. 4. Mesh-based imageundeformationillustrated in 2D: (a) image
slice within a mesh that is under force/displacement constraints; and (b)
corresponding image pixels mapped to the nominal mesh, where thereference
volume is given on a regular-grid structure.

problem of step I is the bottleneck of this technique. Note
that the enclosing element of an image pixel depends on both
mesh deformation and the image position/orientation; hence,
it needs to be computed at each time instantt and cannot be
decided of�ine.

In computational geometry, the 2D point location prob-
lem has been studied extensively [31], resulting in common
techniques such asslab decomposition[32], Kirkpatrick's
algorithm [33], andtrapezoidal maps. However, only a few of
these methods extend to higher dimensions, i.e., point location
in 3D spatial subdivisions. Besides, most techniques focuson
either locating a single point or a set of points scattered over
the given domain, whereas the points in our case—the image
pixels—are regularly-spaced on a 2D planar surface that is
embedded in 3D. Consequently, exploiting this feature of our
problem to build intermediate data structures for locatingall
image pixels cumulatively will accelerate the process substan-
tially. Indeed, any conventional method of locating each point
individually would not allow real-time processing of typical
medical image resolutions. For instance, the point location
routine in the QuickHull package [34] locates the 90K pixels
of a typical image presented in our Results section in over 30
seconds. Therefore, the rest of this paper focuses on exploiting
this spatial relationship of image pixels in order to accelerate
step I above.

C. Fast Equidistant-Point Location on Image Planes in 3D

Due to the 3D mesh elements being much larger than the
image pixels, numerous neighbouring pixels are enclosed by
a single element that is cut by the image. This fact can be
exploited to predict the enclosing element of a pixel from its
pixel neighbours. Although this yields a signi�cant speed gain,
it is still not fully taking advantage of the known grid structure
of the pixels. Even though most predictions will succeed, each
prediction has to be veri�ed by an operation such aspoint-
in-tetrahedron check, requiring many additional operations.

For failed predictions, �nding the enclosing element is again
the same non-trivial point location problem above. Therefore,
an temporary data structure is proposed for each frame such
that, following the construction of this data structure, each
and every pixel is located accurately and immediately, i.e., in
constant time.

Consider the faces of the mesh elements intersecting the
image plane. Note that the mesh-image intersection is the
only information needed to locate all image pixel points.
Indeed, when moving from a pixel to its neighbour, if no
intersection is crossed, the latter pixel still lies in the same
element, otherwise, it lies in a different element that can be
deduced from the intersection information. Thus, using a scan-
line approach, we determine to which mesh element each
of the pixels belongs by traversing the image. The traversal
occurs along a line parallel to an arbitrary axis, e.g. the axial
direction of the ultrasound imaging plane.

The conventional slab decomposition technique for point
location, also called the partitioning scan-line algorithm, lo-
cates individual (possibly scattered) points in a domain using
edge comparisons along a scan-line. In contrast, in our caseof
an image domain, pixels are positioned at discrete locations,
and therefore scan-lines only sweep discrete columns. In this
paper, this discrete pixel structure is utilized to ef�ciently
store the mesh intersection information such that the image
intersections with mesh faces are discretized at the pixel
locations and are stored for use during line scans. Such a
data structure that substantially accelerates the overallimage
generation procedure is built temporarily prior to every frame
being synthesized.

Let us demonstrate a simple 2D case in Fig. 6(a). Assume
that the pixels just below the mesh intersections, shown
with stars, are identi�ed and marked with the corresponding
element numbers as depicted. For a downwards traversal (scan)
of the image, it is inherent that any pixel encountered aftera
marked one is guaranteed to be in that marked element until
another marked pixel is encountered. Implementing such a data
structure to store the discretized mesh intersections (shaded
pixels) requires at mostO(n) storage. Although in practice
these marked pixels will be a small fraction of the image pix-
els, allocating an array the size of the image is computationally
more ef�cient and is not demanding on today's computers. So,
the discretized mesh intersection information can also be seen
as an added property to each pixel, specifying whether it falls
on a face and on which element's face.

Finding the pixels to mark in a 2D case, e.g. the darker
circles in Fig. 6(a), involves solving for line-line intersections
of element edges with the image. Similarly, the intersections
of 3D element faces with a planar image can be found in 3D
using the deformed-mesh node positions and the image plane
equation. However, further processing is required to discretize
and mark them on image pixels.

Tetrahedral elements are chosen for presentation in this
paper due to their common use in tessellations. A tetrahe-
dral element intersecting the image is shown in Fig. 6(b).
Note that a tetrahedron may intersect a plane in one of
two possible con�gurations illustrated in Fig. 6(c). Usingthe
deformed node positions and mesh connectivity, the element
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Fig. 5. Basic steps of the proposed algorithm.
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Fig. 6. (a) Marked image pixels close to projections of elementborders (stars) on a 2D mesh; (b) a tetrahedral element intersecting the image plane; and
(c) two possible con�gurations for a planar cross-section of a tetrahedron with either 3 or 4 edges intersected.

edge intersections shown with stars in Fig. 6(b) are found
easily solving line-plane intersections. Subsequently, the line
segments connecting these stars need to be discretized and
marked on the corresponding pixels. Recalling our downwards
scan-line direction, only theupper line segments (shown with
darker lines for the instance in Fig. 6(b)) need to be marked.
This is due to the fact that the top-half of any cross-section
has to be �rst crossed by the scan-line in order for it to reach
the interior of the cross-section. Similarly, once leavingthis
cross-section, the top portion of the next element below will
be crossed indicating that the up-coming pixels do not belong
to the previous element anymore. Therefore only marking the
edge of elements in the direction of an incoming scan-line is
suf�cient.

Let us demonstrate this pixel marking for a tetrahedral
mesh sliced by an ultrasound image plane in Fig. 7. The
3D view in Fig. 7(a) shows the element cross-sections. The
discretization of these face intersections on the image pixels,
which is the above-mentioned intermediate data structure,is
seen in Fig. 7(b). Part of this structure is illustrated enlarged
in Fig. 7(c), where the actual face intersections are depicted
with dashed-lines and their pixel discretizations with coloured
circles. The element numbers marking these pixels are also
labeled in the �gure.

Bresenham's line drawing algorithmis used to discretize
these segments on the grid of image pixels [35]. Note that
it is possible for more than one intersection segment to be
discretized on the same pixel. Although this is more likely to
occur at the corners of the polygons, it can extend to more

pixels of a line depending on the relative slopes of neighbour-
ing line segments. For instance, consider the central pixelP
shaded in Fig. 7(d), which is involved in the discretizations of
both the elementse6 and e7. If this pixel were to be marked
as belonging toe6, then our line scan would mis-locate any
pixel in the column belowP. Such discretization con�icts,
where the same pixel is involved in the discretization of more
than one edge intersection, may occur at a substantial number
of pixels and each may involve many edges. Therefore, a
mechanism is required to ensure that such pixels are marked
correctly. In this paper, we resort to a method oftopologically
sortingall the tetrahedra cross-sections prior to marking them.
The details are explained in Appendix A.

D. Finding the Pixel Intensity Value

Each 3D pixel location is mapped to the reconstructed image
voxel volume, where its intensity can subsequently be inter-
polated. The deformation part of this mapping is addressed
using the barycentric coordinates with respect to the enclosing
element. The overall mapping from the discrete image plane
coordinates to the reconstructed volume coordinates can be
expressed as a combination of linear transformations as shown
in Fig. 8. In this �gure,TV P is the image-to-mesh transforma-
tion, which is determined by the probe position/orientation and
hence is constant for all pixels of the same image frame.Tes

is the deformed-to-nominal mesh transformation de�ned by
the node displacements of the enclosing elementes due to the
deformation. This transformation is constant within an element
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Fig. 7. (a) A mesh and cross-sections of the elements sliced by the image simulated for an ultrasound probe; (b) element boundaries discretized and marked
on the image prior to the interpolation; (c) a close-up to thismarked image; and (d) a pixel of con�ict, that is to be marked according to the scan direction.
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Fig. 8. Transformations that map a pixel to the reference voxelvolume, where an interpolationg(�) �nds its intensity value.

for the mesh-node displacements of that given instant and it
is calculated using barycentric coordinates [36] as described
in Appendix B.

Note that TV P changes with probe motion, whereasTes

with deformation. Consequently, a cumulative transformation:

Ts = Tes TV P (3)

can be computed for any given elementes during the im-
age synthesis of a given probe position/orientation within
a known/simulated deformation. Since any pixel within that
element is subject to this same transformation, it is calculated
only once per intersected element per image frame.

E. Summary of the Proposed Algorithm

For the synthesis of every frame, �rst the set of elements
that are intersected by the imaging plane is compiled. This
set L is composed by traversing the elements in the plane
using a 3D mesh element neighbourhood list, which is pre-
compiled of�ine as soon as a 3D mesh is available. Note that
the neighbours of an element do not change with deformation.
Therefore, given an intersected element, such a list enables us
to deduce its neighbours that are also intersected by observing
which face of the current element intersects the image plane.

The setL is then sorted topologically and the top-halves
of the element projections are discretized and marked on
the image in that sorted order using Bresenham's algorithm.
Figure 7(b) demonstrates an instance of marked image pixels.

The intensity of a pixelPi is found by interpolatingTsPi in
the reference voxel data. This interpolation is denoted by the
operatorg(�) in Fig. 8. For an example of using the nearest-
neighbour interpolation (NNI), if we assume thatround(�)
function gives the nearest discrete reference-grid location to
a point, thenI 0(round(TsPi )) is the intensity of the pixel
sought.

The transformations for all the intersected elements are
computed while the set L is compiled. Subsequently, for every
edge crossing of the scan-line, acurrent transformationpointer
can be switched to point to the transformation matrix of the
current enclosing element. Our proposed algorithm for the
synthesis of one image frame can be summarized as follows:

1. Compile the setL of intersected elements with their
relations.
2. Sort L topologically.
3. Mark the cross-sections ofL on the image in the sorted
order.
4. Compute the transformationTs for each elementes 2 L
5. For eachimage pixelPi

5a. If Pi is marked with elementes,
then set the active transformationT to Ts

5b. Find the intensity ofPi by interpolatingI 0 at T Pi
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F. Computational Analysis

In the algorithm above, the loop in step5 processes every
image pixel, while the previous steps are used to compile the
intermediate data structures to accelerate this step. Consider
an n-pixel image intersecting a total ofm elements in a 3D
mesh and recall thatn � m for typical medical images
and FEM tessellations. Note that the synthesis of an image
requires some form of processing of each of its pixels,
thus the computation of any synthesis algorithm has a lower
bound of 
( n). Nevertheless, the individual computational
cost for every pixel may render an algorithm infeasible as
demonstrated in Section III-B. Indeed, a method that is sub-
optimal for our application may demand over 30 s just to locate
pixels in mesh elements. The computational analysis of the
methods and the data structures introduced in this paper are
presented below.

Compilation of the intersected element setL starts from an
arbitrary initial intersected element, such as one touching the
probe. Finding this initial element, which can be done simply
by traversing the top surface of the mesh, takes insigni�cant
time. Once one intersected element is found, the traversal of
the rest using a pre-compiled neighbourhood list in step1 takes
constant time per element. Computing each transformation
in step 4 is also a constant time operation per element.
Topological sort takes linear time with respect to the total
number of cross-sections and partial relations. Nonetheless, in
our case the relations are set by the shared edges between
the m cross-sections and thus the number of such edges is
bounded from above by a multiple ofm. As a result, all the
steps1, 2, and4 compute inO(m) time.

The computation of step3, where the pixels on cross-
sections are marked, depends on various implementation
choices, such as the speci�c line drawing algorithm. Nev-
ertheless, it can be approximated by the number of pixels
actually marked on the image. This can in turn be regarded
as approximately

p
m rows of elements being marked by

Bresenham's algorithm on their upper halves. Considering a
row of elements has on the order of

p
n pixels to be marked,

step3 thus requiresO(
p

nm) time to compute.
Note that the signi�cantly lower computational order of

steps1-to-4 justify the anticipated speed gain during step
5. In particular, step5a of identifying the enclosing element
reduces down to a single memory access while, in step5b,
the transformation of pixels byTs from discrete 2D image
coordinates to the 3D reconstructed volume requires only
12 multiplications per pixel.

G. Deformation Model

The deformation model employed in our particular imple-
mentation is a linear-strain quasi-static �nite-element model.
For this, �rst a mesh representation of the region of interest is
obtained. Using the Young's modulus and Poisson's ratios of
the materials involved, a stiffness matrixK relating the nodal
displacementsu of this mesh to the nodal forcesf is compiled
such thatf = K u [36]. Fundamental boundary constraints
(the �xed nodes of the mesh) are next applied on thisK by
zeroing its corresponding rows/columns.K is then inverted

90

90

60

25

35

(a)

(b) (c)

Fig. 9. (a) The phantom design (in mm), (b) its mesh, and (c) the image
acquisition setup.

and saved for use in the online simulation, where the probe
surface is applied as displacement constraints on the nodes
that are in contact with it so that the displacementsu of every
node are calculated at each iteration. Modeling such contacts
and achieving conforming meshes with contact surfaces is an
active �eld of research with various approaches having been
proposed for different deformation models (e.g., local mesh
re�nement [36], multi-resolution meshes [37], condensation
[3], force coupling [6]). In our experiments, it was assumed
that the contact locations were known apriori so that the mesh
was generated ensuring that nodes do exist on those interfaces.

IV. RESULTS

For our experiments, a 60� 90� 90 mm tissue-mimicking
gelatin phantom, having a soft cylindrical inclusion of 25 mm
in diameter, was constructed. The phantom was meshed using
the GiD meshing software [38] yielding 493 nodes and 1921
tetrahedra. The elasticity parameters for the FEM simulation
were set to the approximate values known for the gelatin con-
centrations used. This phantom was imaged using a Sonix RP
ultrasound machine from Ultrasonix Medical Corp. with a
linear probe mounted on a precision motion stage. Vertical
parallel slices with 1 mm separation were acquired with care
not to deform the phantom surface. The dimensions and the
mesh of our phantom and our imaging setup are seen in Fig. 9.

Images, that physically span an area of 37.5� 70 mm, were
acquired at a resolution of 220� 410 from the display pipeline
of the ultrasound machine. This is a typical B-mode resolution
that this ultrasound machine outputs to the screen for the given
probe and default imaging parameters. For our experiment, 75
images were collected at a 1 mm interval while moving the
probe in its elevational axis. Accordingly, our reconstructed
voxel volume is chosen to be the collection of these parallel
slices, which constitute an average of 8750 voxels per element
in our particular phantom mesh.

Deformation was applied by indenting the phantom with
the probe. It was simulated using the FEM with the bottom
side of the phantom being the �xed fundamental displacement
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
Fig. 10. Simulated (upper) and acquired (lower) images with 0,5, and 10 mm indentations for probe tilted at (a-c) 0� ; (d-f) 15� ; (g-i) 30� ; and (j-l) 45� .
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Fig. 11. Normalized mutual information (a) and sum of squared differences
(b) of the images simulated and acquired at 1 mm incremental probeinden-
tations (the values at[0; 0], which match perfectly, are not presented here to
preserve the colour map).

boundary constraints. The probe indentation was applied asa
displacement constraint to the mesh nodes coinciding with the
probe on the top surface. In the FEM, the Young's moduli were
set to 15 KPa and 5 KPa for the background and the circular
inclusion, respectively, and a Poisson's ratio of 0.48 was
used for both. The ultrasound images were then synthesized
using the techniques presented. Some of the acquired and the
simulated images are presented in Fig. 10.

The images of a simulated probe indentation were com-
pared to the images during an identical physical indentation
experiment using theirmutual information(MI) and sum of
squared differences (SSD). 11 images were both simulated
and acquired in 1 mm steps up to a 10 mm compression. The
MI and SSD between each pair of simulated and acquired
images are presented in Fig. 11. In this paper, to present
these MI values as a ratio of an absolute measure in our
experiments, the values were normalized with the average MI
of two images acquired 1 mm apart in the elevational direction.
As seen in Fig. 11(a), the simulated images and the acquired
images for the same indentations have the highest MI and
the lowest SSD, as expected. This shows that the simulation
can successfully synthesize an image closely resembling a real
one. For reference, in our phantom the average MI between an
ultrasound image and one that is shifted vertically by one-pixel
is 117% of the average MI of two images 1 mm apart (forming
the normalization factor) and it is 67% between two acquired
images with 1 mm probe indentation, when normalized as
de�ned above.

The method can generate slices of given 220� 410 resolution
using the NNI in less than 13 ms on a 1.87 GHz Pentium
computer. Using tri-linear interpolation (TLI), the simulation
of a B-mode frame on the same computer takes approximately
25 ms. In order to evaluate the effect of the number of image
pixels n and the number of intersected elementsm on the
computational speed, the frame synthesis time for the NNI
was measured using different image parameters. As presented
by the computational analysis, a linear dependency onn
and a negligible effect ofm were expected. First, the image
resolution was decreased at 10% decrements of the original
resolution while keeping the physical span of the image frame,
and then the physical image span was decreased at 10%
decrements of the original span while keeping the number
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Fig. 12. Change of frame synthesis time when varying the number of pixels
n (+) and the number of intersected elementsm (x) expressed in percentages
of the full-size images presented above.

of pixels the same. Note that, effectively, the former alters
n for a constantm and the latter altersm for a constant
n. Consequently, the former decreases the pixel density per
element, i.e., the number of pixels falling into each element
cross-section whereas the latter increases it. As presented
in Fig. 12, the number of pixelsn was observed to determine
the speed in theO(n) manner as expected, whereas the number
of intersected elementsm exhibited little effect on speed. Note
that the slope of this linear dependency onn is de�ned by the
hidden cost of processing each pixel (step5). Our approach
of introducing additional steps and data structures in order to
reduce this hidden cost to a few multiplications is the key to
accelerating such a method.

The technique above has been implemented for interactive
ultrasound visualization with simulated deformation as seen
in Fig. 13. In this system, a SensAble PhantomTM Premium
device mimicking the probe is manipulated by the user while
a visual interface displays the tissue mesh and the probe
in 3D. At the same time, the ultrasound images are also
synthesized by our algorithm and displayed at real-time visual
rates (over 40 Hz even when additional computation time for
FEM simulation and haptic feedback are added on top of the
13 ms/frame image synthesis time). A simple feedback force
normal to the nominal tissue surface and dependent on the
current penetration depth was applied to user's hand. The
probe indentation was modeled as displacement constraintson
the closest surface tissue nodes and the mesh deformation was
computed using a pre-computed inverse stiffness matrix.

For an in-vivo assessment of this simulation method, B-
mode images of the thigh of a volunteer were also simulated.
The 3D volume was reconstructed from B-mode images ac-
quired by the same Sonix RP ultrasound machine. The spatial
positions of these images were recorded using a magnetic
position sensor, Ascension MiniBIRD, attached to a linear
ultrasound probe so that a free-hand scan can be conducted.
The anterior upper thigh of a volunteer was then scanned
as seen in Fig. 14(a) to a depth of 45 mm by translating the
probe orthogonal to its imaging plane similarly to the phantom
experiment. The spatial arrangement of the collected images
can be seen in Fig. 14(b). The volume represented by these
images is then resampled on a regular grid of 0.1 mm spacing
using the Stradwin software [26].

Considering the thigh tissue locally, the femur is the �xed
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(a) (b) (c) (d) (e) (f)

Fig. 15. Simulated ultrasound images of the thigh with 0, 2, and5 mm indentations (shown with arrows) for probe tilted at (a-c) 0� and (d-f) 30� .
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Fig. 13. Real-time ultrasound scanning simulator.
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Fig. 14. (a) The setup for in-vivo data collection and (b) thespatial
arrangement of the collected ultrasound images.

displacement boundary condition, that plays a major role in
the way the thigh deforms. The femur anterior surface was
segmented from a deeper ultrasound scan of the same thigh
region. An FEM mesh of 3805 elements and 997 nodes was
generated using the GiD software and displacement boundary
conditions were de�ned by spatially �xing the nodes on the

femur surface. For the purpose of this paper, all soft tissue
was given a �xed Young's modulus of 15 KPa and a Poisson's
ratio was set to 0.48 . Ultrasound images of two different probe
orientations were simulated using tri-linear interpolation. Sim-
ulated images at different indentation depths are seen in Fig 15,
where the anterior thigh anatomy is observed to deform under
probe pressure.

V. DISCUSSION

In the literature, there have beenin-plane image deformation
strategies for image registration, deformation correction for
volume reconstruction [10], [25], and a training simulation
for DVT [18], [23]. However, these 2D approaches cannot
simulate out-of-plane deformations. Even if the deformation
is driven by motion only in the imaged plane, the bound-
ary conditions may couple image plane motion with motion
orthogonal to the imaged plane, and such methods simply
cannot account for motion orthogonal to the imaging plane.
Indeed, consider the case of brachytherapy, where the prostate
is imaged with the transversal crystal of the endo-rectal
probe while the needle may push the prostate through the
imaging plane (see Fig. 1(c)). For such deformation induced
orthogonally to the imaging plane, 2D approaches simply do
not apply and our method becomes essential.

Our choice of phantom geometry aims at presenting out-of-
plane deformation. During the indentation experiments with
the probe tilted, not only do the phantom structures compress,
but also the image plane moves through the volume in its
elevational axis.

Our simulation method is not limited to linear imaging
geometry, but can also accommodate other probe geometries
such as sector probes. Indeed, regardless of the transducer
crystal geometry, the conventional format for displaying,pro-
cessing, and storing B-mode images is Cartesian-based in
compliance with the common screen hardware and image
processing algorithms. Consequently, our method simulates
the pixels on a regular-grid regardless of the original data
acquisition format, similarly to other interpolation-based im-
plementations in the literature. The simulation of a sector
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image, for instance, can be accommodated in the current
technique by simulating all pixels internal to the bounding
box of the non-rectangular image footprint and then masking
off the pixels lying outside the actual sector image region.

Locating the points of a 3D grid was studied in [39] to
resample a 3D mesh to use in the �nite difference method for
simulating seismic wave propagation. However, note that we
are interested in a 2D plane that intersects the mesh in arbitrary
orientation. Furthermore, our case involves deformed meshes
and registering an image plane manifold between different
mesh con�gurations.

A deformation simulator must have two components: one
that predicts how tissue deforms based on a physically valid
model and one that can display the result at a high enough
frame rate to match the simulation context, i.e., be “real-time”.
Considering the former, many medical simulations employ
the FEM to produce the mesh deformation in response to
tissue forces or changes in the tissue constraints. Coupledwith
this FEM simulation, the user of a medical simulator should
be able to examine the simulated tissue in a manner that is
accurate and real-time. The techniques presented in this paper
serve to this latter need.

It is important to realize that our presented method is
independent of the FEM simulation and does not introduce any
additional approximations and errors beyond those intrinsic
to the FEM simulation, i.e., there is no trade-off between
image synthesis acceleration and image quality. The image
synthesis method uses the same mesh and the same interpola-
tion functions as the FEM simulation, and the re-sampling is
performed over a grid of the same resolution as the original
medical image data while keeping the highest possible image
resolution given the reference image data set. Consideringthe
B-mode image synthesis in particular, the only assumption
employed is the isotropy for the ultrasound interaction model.
In addition, note that the method introduced for image pixel
location gives an exact solution, not an approximation. Such
a method is superior to the previous techniques in locating
regularly-spaced points at the expense of a small additional
storage and its initialization time.

Our method aims at the development of a real-time re-
alistic image synthesis technique, which can be integrated
with training systems that involve tissue deformation. In this
context, the simulated images were found to be adequate
for medical simulators by physicians following a preliminary
visual inspection. This will be assessed further by expert
sonographers in speci�c clinical procedures, such as prostate
brachytherapy, in the future.

As explained in Section III-F and justi�ed by the results in
Fig. 12, the frame synthesis time of our simulation depends
mainly on the pixel number, but is also affected by the
number of elements intersecting the image to a small degree.
Nevertheless, note that it is independent both from the entire
physical span of the FEM mesh and from the total number
of nodes/elements in it. It is indeed further independent from
the entire physical span of the reconstructed image data set,
assuming it �ts in the computer memory. Consequently, much
larger tissue representations can be handled successfully. Also
note that the extent of the reference image volume does not

have to match the extent of the FEM mesh. For instance, in our
experiment the bottom part of the phantom was not imaged for
the reference volume due to the depth setting of the probe and
hence the black regions appear at the bottom of the simulated
images when indentation is applied. However, the deformation
simulation was considering the entire phantom volume for an
accurate simulation.

Observing the relatively small effect of the number of
intersected elements on synthesis time in Fig. 12, it is seen
that more elements on the plane will not be detrimental to
the simulation. Consequently, techniques such as local mesh
re�nement will not impede the speed, sincen � m is still
valid. Indeed, one can analyze the data on such a �gure
to estimate maximum image resolution for a given mesh
simulated on a particular machine.

In general, 3D ultrasound reconstruction involves resam-
pling the acquired images in order to generate volume data on
a grid-structure. In our phantom image collection, ultrasound
slices were parallel and relatively dense creating a regular grid,
therefore no further processing was needed for reconstruction.
For the in-vivo data, the Stradwin software was used to
resample the data in a grid structure. In this paper, the nearest-
neighbour and tri-linear interpolations were employed in the
image synthesis step. Other interpolation schemes are also
applicable depending on the computational limitations for
achieving a required frame-rate in a particular implementation.

Note that, for signi�cantly large deformations, the acquired
and the simulated images may not match exactly using the
linear-strain approximation due to rotationally-variantlinear
elements. Nevertheless, there exist numerical treatmentsin
the literature to achieve rotational invariance [40]. Non-linear
elasticity with dynamic models has also been proposed in
the literature [4]. All these models provide mesh node dis-
placements at given time instants, which can be used by our
technique to synthesize images as in the given implementation.
Moreover, even other deformation models that provide node
displacements, such as �nite differences or spring networks,
can be used since the barycentric transformation proposed does
not assume, nor is bound to, any property of the FEM.

We assume that linear interpolation is used within the
FEM mesh, therefore 4-node tetrahedra were employed in
our simulation. The interpolation accuracy is maintained by
reducing the size of the mesh elements as necessary. The
presented techniques still apply to deformations computed
by higher-geometry elements, such as 10-node tetrahedra, by
using only the corner nodes for image synthesis. Considering
element geometries other than tetrahedra, e.g. hexagons, or
meshes with mixed elements used for FEM deformation, note
that the image plane cross-sections of such convex polyhedra
are also convex. Thus, these cross-sections can still be found
and marked using the techniques presented. However, an
alternative undeforming transformation will be needed instead
of using the barycentric coordinates.

Our phantom has the same cross-section longitudinally,
therefore two 1 mm-apart images look (and should look) the
same to the human eye. Although their speckle pattern may
differ, for an observer they both carry the same information
about the location, size, and other features of the inclu-
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sion. The MI of this minimal and practically in-differentiable
speckle pattern change is taken as the base for normalization.

Note that, once the image is marked, the processing of
each and every scan-line is independent of another. This
allows for completely disjoint synthesis of each scan-line,
which is a signi�cant advantage for parallel processing of
the computationally intensive step5. For instance, on the
emerging multi-core CPU architectures, scan-lines can be dis-
tributed among CPU cores. Moreover, the simple computation
scheme of step5 is highly aligned with the SIMD (single
instruction, multiple data) execution model for parallelization
on recent GPU computation/programming technologies, such
as CUDA [41].

The approach presented in this paper is an enabling tech-
nique for many medical simulations and in particular for any
ultrasound simulator that will allow for tissue deformation.
Fast image simulation is also essential for certain deformable
registration techniques, where image slices of a deformed
volume are compared to a set of reference images while
the deformation constraints are being optimized iteratively.
Studying accelerated image synthesis is of signi�cant value
especially in such registration schemes, where the generation
of sliced images through mesh-based deformations is one of
the computationally intensive steps. Faster synthesis is also
crucial for the processing of high resolution images. A faster
algorithm allows for the generation of possibly more than one
slice at a time instant (such as to render the volume in 3D)
and also facilitates the presentation of more than one modality
to a trainee during a training simulation (such as additional
deformed MR and/or CT to better understand the anatomy
scanned).

This paper treats the problem of image simulation with
deformation using an interpolative approach due to real-
time processing limitations and parametrization dif�culties of
generative models. An ultrasound image is indeed a product of
very complex wave interactions in the tissue. In an interpola-
tive approach, instead of attempting to model this complex
wave behaviour, image features (and similarly artifacts) are
reproduced and placed in simulated images at the 3D location
where they were originally acquired. Similarly, our technique
assumes that the B-mode image of a deformed tissue region is
similar to the properly deformed version of a B-mode image
taken prior to deformation. However, the visibility of an actual
image feature (e.g. a sharp tissue interface) or an artifactin B-
mode imaging may depend on the direction of the incidence of
the ultrasound beam, whereas the visibility, with an interpola-
tive approach, depends on the direction of the original data
collection regardless of the simulation-time probe orientation.
Therefore, interpolative B-mode techniques may not be opti-
mal or applicable for certain tasks. Nevertheless, they arestill
of great value in the medical �eld and are employed in various
B-mode applications such as volume reslicing in commercial
3D ultrasound machines. Our approach equips the user with a
fast and powerful tool for a range of applications from training
simulators to fast deformable registration, but only afterthe
nature of the simulation method and its related limitations
are understood. Note that, as opposed to ultrasound, for other
imaging modalities such as MR, the assumption above may

be satis�ed.
Our method can be extended for applications and anatomy

in which artifacts are prominent by acquiring multiple recon-
structions of the same volume where the images are collected
at various probe incidence angles. Subsequently, for each
frame simulation, the reconstructed volume acquired by the
closest probe orientation to the simulated probe will be used.
This will effectively maximize the likeness and direction
of artifacts in simulation. Note that such a modi�cation
introduces additional memory storage cost due to multiple
reconstructed volumes; nevertheless, it does not increasethe
overall computational complexity of the approach.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a technique for synthesizing planar images in
deformed meshes of tissue models was presented. The method
uses the 3D image data of the pre-deformed tissue. A pixel
enumeration technique originating from common scan-line
algorithms was adopted to enable fast identi�cation of mesh
elements enclosing each image pixel during deformations
given by mesh node displacements. This allows the generation
of medical images of considerable size at frame rates that
are suitable for real-time applications. This technique was
implemented to simulate B-mode images of a deformable
phantom and anterior thigh of a volunteer. Synthesized images
of probe indentations were then compared to the corresponding
images acquired by physically deforming the phantom. A real-
time ultrasound simulator implemented on a haptic device was
also demonstrated. The results show that the proposed method
produces realistic-looking B-mode images. The methods pre-
sented are easily adaptable to other imaging modalities and
deformation models.

APPENDIX A
RESOLVING PIXEL DISCRETIZATION CONFLICTS

The correct element for marking a pixel in con�ict depends
on the scan-line direction. Normally, a pixel on an edge
intersection must be labeled by the element which a line
scan passing through that pixel is just entering. For instance,
in Fig. 7(d), with respect to our chosen scan-line direction, the
pixels immediately below pixelP belong toe7, thusP should
be labeled as 7.

To resolve such discretization con�icts, we �rst sort the
cross-sections prior to marking them. Discretizing the cross-
section edges on image pixels given a suitable order enables
each cross-section label to over-write a previous one by leaving
the desired label on the pixel in the end. To formulate such
a sorting so that the last value marking a pixel is the correct
one, consider a pair of neighbouring cross-sections. A scan-
line passing through both of these will visit �rst one and then
the other, since they are convex polygons. Furthermore, the
order will be the same for every scan-line traversing both
cross-sections. Note that, for a scan-line to correctly locate
the pixels below a corner (or, similarly, an edge) shared by
these cross-sections, those shared pixels need to be markedby
the last-traversed cross-section. In Fig. 7(d),e7 is the latter-
traversed element cross-section. Therefore,e7 's edges have
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Fig. 16. (a) An illustration of element partial ordering and (b) its corre-
sponding directed graph.

to be discretized aftere6 's, consequently, label 7 over-writes
label 6.

This traversal precedence criterion is indeed apartial order-
ing relation in-between all the pairs of neighbouring element
cross-sections in the image plane. Let `< ' denote this relation
such thatei < e j indicates thatej is traversed later thanei by
any given scan-line. Due to the convex cross-section geometry,
this relation is transitive such that:

(ei < e j ) and (ej < ek ) =) (ei < ek ) (4)

Therefore, all cross-sections can be represented by adirected
acyclic graph [42], where the intersected elements are the
nodes and their traversal precedence orders are the directed
graph edges connecting the pairs of neighbouring elements.
Such a graph can be sorted linearly into a global (total) order
that satis�es every given partial order relation. This procedure
is called topological sorting[42]. Note that there may exist
more than one such global ordering, any of which can be
used for our purposes. For example, the illustration of cross-
sections in Fig. 16(a) has a graph as shown in Fig. 16(b), and
one possible ordering of this graph is as follows:

e10 < e2 < e9 < e1 < e8 < e4 < e3 < e5 < e6 < e7 < e11

(5)

APPENDIX B
UNDEFORMING USING BARYCENTRIC COORDINATES

The 3D position of a pointx = [ x y z]T inside a tetrahedral
elemente, seen in Fig. 17(a), can be expressed as follows:

x =
4X

k=1

r k ck (6)

where r k are the barycentric coordinates with respect to the
element cornersck = [ xk yk zk ]T , which are the deformed
node positions. This equation can be rewritten for normalized
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Fig. 17. (a) A deformed element at a time instantt and an image pixel X
lying within; and (b) the nominal pre-deformed geometry of thissame element
with the corresponding undeformed pixel location.

coordinates in the following matrix form:
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x = Cr (8)

so that the barycentric coordinates can be found asr = C � 1x .

The pointx 0 seen in Fig. 17(b) corresponding to the same
barycentric coordinates in the nominal pre-deformed con�g-
uration of the same element can also be written similarly as
x 0 = C0r for the nominal node positions ofck . As a result,
this corresponding nominal location is found as:

x 0 = C0C � 1x (9)

x 0 = Tes x : (10)
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