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Abstract—This paper presents an algorithm for fast image Pr"b{e/ Probe’ Probe
synthesis inside deformed volumes. Given the node displacements o 77\7\/¢\ (/iigagé )
of a mesh and a reference 3D image dataset of a pre-deformed Image- “Image w
volume, the method rst maps the image pixels that need to be . Needle
synthesized from the deformed con guration to the nominal pre- @ _ <
deformed con guration, where the pixel intensities are obtained ’ Inelusion L nclusion | Inclusion
easily through interpolation in the regular-grid structure of the \ / |

reference voxel volume. This mapping requires the identi cation
of the mesh element enclosing each pixel for every image frame. (@ (b) (©)
To accelerate this point location operation, a fast method of
projecting the deformed mesh on image pixels is introduced in
this paper.

The method presented was implemented for ultrasound B-
mode image simulation of a synthetic tissue phantom. The

phantom deformation as a result of ultrasound probe motion prachytherapy and breast biopsy, can also signi cantlyelten
was modeled using the nite element method. Experimental ¢, ‘sych simulation techniques. The ability to mentally

images of the phantom under deformation were then compared . . ) . - o
with the corresponding synthesized images using sum of squared register two-dimensional (2D) image slices within the ére

differences and mutual information metrics. Both this quanti- dimensional (3D) anatomy is a non-trivial skill required by
tative comparison and a qualitative assessment show that that any sonographer. Real-time ultrasound simulators have the

realistic images can be synthesized using the proposed technique potential to accelerate and improve such training.

An ultrasound examination system was also implemented to . . . .
demonstrate that real-time image synthesis with the proposed In a typical ultrasound simulation scenario, the user must

technique can be successfully integrated into a haptic simulation. P presented with an image slicing the target anatomy. In an

. . . . actual diagnostic or operative procedure, such targebamat
Index Terms—ultrasound image simulation, sonography train- . ften def d und . f h It d
ing, B-mode image synthesis, deformation slice rendering, medi- IS often dejormed under various forces, such as ultrasoun

cal image simulation probe contact, as illustrated in Figures 1(a) and 1(b). Note
that an ultrasound probe only compresses the surface of the
I. INTRODUCTION tissue, whereas there exist other medical tools that furthe

LTRASOUND is a non-invasive and safe medical imagmanipulate the tissue internally, e.g. percutaneous eseat
ing modality and hence one of the most commonli Fig.1(c). A realistic image simulation should take such
used examination tools. However, image anisotropy and thésue deformations into account in order to deliver an im-
existence of various signi cant artifacts cause the need fehediate representation of the anatomy in its current defdrm
extensive echographer training. Current standard educai COn guration.
in the form of supervised examination of real pathologies Modeling of tissue deformation has been studied extensivel
during clinical practice. Despite its many advantagess thin the literature [3]-[6]. Common techniques such as mass-
approach involves signi cant time expenditure of quali edspring models and the Finite Element Method (FEM) use a
personnel and can only be performed when a supervisor andigcretization (mesh) of the tissue volume and correspandi
patient are available. Furthermore, training on rare gatiies elasticity parameters to approximate its behaviour unoiad.|
poses a problem. Indeed, students have the chance to Idargeneral, these model parameters are abstracfgari and
only 80% of the important pathologies during one-year afsed with given forces in real-time to compute deformation,
standard education [1]. This need for ultrasound exanunatiwhich is commonly expressed as a set of displacements of
training has motivated several computer-based simulaien the given mesh nodes. To enable a real-time computation
vironments [2]. In addition to examination, training of medof deformation, this discretization often has a signi dgnt
ical procedures that utilize ultrasound imaging, e.g. fates coarser structure than the typical resolution of medicalgimg
) ) _— ~modalities. This paper presents an image generation wpe@ni
Copyright (c) 2009 IEEE. Personal use of this material is piechi . .
However, permission to use this material for any other purpaosest be in deformed 3D meshes and addresses the computational
obtained from the IEEE by sending a request to pubs-permisgieee.org. Challenges for real-time performance. Realistic simafatbf
O. Goksel and S.E. Salcudean are with the Department of Eactr jltrasound, which is a real-time imaging modality, is the
and Computer Engineering, University of British Columbiantauver, BC, . L . . .
Canaddf orcung,ims ~ g@ece.ubc.ca . primary target application of our image generation techeiq
Manuscript received MMM XX, 2008; revised MMM XX, 2008. While the image slicing methodology we propose is described
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Fig. 1. An image slice (a) before and (b) after a deformationseduby
probe pressure; and (c) illustration of deformation duriegdie insertion.
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for B-mode ultrasound, it also applies to other modalitieshs

as MR and CT. OFFLINE:
The paper is organized as follows. First, our choice of

interpolation procedure, which consists of nding the im- \}/

age pixel intensities by referring their positions back le t N . -

nominal pre-deformed con guration, is introduced. Thets, i manLinSuelgtion 'ma‘ﬁe SFmULat'O”

application within meshes that are deformed based on the FEM (probe/tools) deformetion | Image

is outlined in 2D. Next, the pixel location problem that asgs

m.SUCh a scheme .and our proposed numer.|cal treatment f%r 2. Online and ofine steps of the proposed interpolatmased

this are presented in 3D. In the results section, the prabosgy,,iation.

technique is demonstrated for real-time ultrasound sighe

a tissue-mimicking ultrasound phantom and in-vivo thighada

deformed by the ultrasound probe itself. A discussion of t
limitations and possible future extensions conclude thisep.

ONLINE:

rb%be [19], [20]. Others proposed processing imaginarg ray
mimicking ultrasound using heuristic interaction funoto
Il. PREVIOUS WORK de ned for coarse (pixel level) tissue _represent_ationshwit
. . ) . .. . abstracted parameters, namely attenuation, re ectiothsaat-

An ultrasound simulator necessitates rapid and realistic Lterer power [1]. Unfortunately, the adjustment of such pesa
age _rende_ring of defo_rmed tissue in_response to probe or tpgls a5 not addressed in this work. Deriving parameters fro
mam_pulatpn by a trainee. There (?X|st two major a_pproache\sr data was also proposed in [21] and in [22], separately, in
for simulating B-mode ultrasound imagdhe generative ap- order to generate ultrasound images by processing CT images

proachandthe interpolative approachThe former simulates Although such pseudo-generative methods for echography
the ultrasonic wave propagation by using accurate models Shulation are appealing, due to the substantially complex

the probe, the tissue scatterers, and the wave interactipn ature of actual wave interactions, it is extremely dif ttb

[8}(' Gineratlrllgha sw;}gle B'mOdi f_rame us!ngbltm? temqﬁ%nerate even common ultrasound phenomena, such as speckle
ta els ours. usr; this approach s not suitable for r'b:betl formation, using these methods, let alone realistic images
applications. Furthermore, in practice it is not possi Qesult, existing simulators that are studied for clinigalring

extract an exact scatterer model of a complex medium suchag 5 iog 2], [12], [13], [15]-[18] are interpolationsa.
the tissue and hence the images generated with this tecehmquln many medical procedures, such as prostate brachyther-

typically look arti cial. The latter approach generatesages _ . — )
by int lating . ired i f th I Py [5], brain surgery, or breast biopsy, signi cant defation
y Interporating from pre-acquired images of the Vo um(-?s caused by medical tools or by the ultrasound probe. In

While interpolation directly from arbitrarily-oriented Beans ) 7 : . ; .
rtain applications, such as in the diagnosis of deep-vein

was demonstrated in [9], the construction of a regular-grt bosis (DVT). def i b din ult di
reference volume, calle8D ultrasound reconstructiofil0], rombosis ( ), deformation observed in ultrasound igeag

[11], is commonly the preferred method because it enablggring deliberate probe indentation contains essentigjrib-

data processing with off-the-shelf algorithms. UltraSit2]] f_'s mform:;tlona I?cast s%{nthes_:ls fOf.ll.JtltrtaS(t)#ndd |ma}ges |r]t1]tsof
which is one of the rst commercial ultrasound image simula2SSUes under deformation will taciitate the developme

tors, and several others [13]-[18] follow this latter apmio. training S|mulc<jalt.ors.lé\3/V|tn th|s gIO?I, a}[hDVT dt|)agn05|s smgra ¢
Refer to [2] for a review on ultrasound training simulators. was proposed in [18]. It simulates the probe pressure by rs

Note that anisotropic image artifacts, such as shadowidg aﬂ'c_'ng an image from the 3D. ultrasogn_d data sef[ and then ap-
reverberation in ultrasound, may not be reproduced cdyrec? ying a 2D_ elast_|c deformation to fchls_|mage using quadtree
by an interpolation scheme due to their direction-depend Imes_. Th!s 2D in-plane defo_rmat|on Is pre-computed ug i
characteristics. One attempt to remedy this shortcoming Y registering the segmentations of pre-deformed and post-
to acquire real ultrasound images of the volume at seve formed anatomy of a test case [23].
positions/orientations. Subsequently, for a given proisation ~ Real-time ultrasound image slicing using physically-gali
during Simu'ation' the image that Corresponds best with ﬂ'@ deformation models has not been addressed in the litera-
orientation can be selected from that database and showriu- Our work is motivated by this need. A recent work applie
the user. This is not feasible in practice due to the unlichiteSimilar techniques to generate ray-traced volume rengestn
number of possible probe and/or medical tool con guratior@ deformable liver model [24].
during a simulation [1]. For a deformed-volume image slicing strategy, as illusttat
Since a generative simulation approach with a full-blowim Fig. 2, a reference volume dataset is required. The mnedere
wave interaction model is not feasible for real-time applicimage volume can either be obtained using a 3D ultrasound
tions, some recent work has focused on developing heurigtiobe or, alternatively, it can be constructed from indih
models that can be computed in real-time. Some research2PsB-mode slices. This 3D ultrasound reconstruction has bee
looked at the problem in the context of computer graphicstudied extensively in the literature [10], [11], [25], [2&iven
such as rst texture mapping different tissue regions bthis reference volume and a mesh-based deformation model,
pre-computed backgrounds, then imposing a Gaussian ndise image synthesis component (Fig. 2) of an ultrasound sim-
to generate an articial speckle pattern, and nally applyulator is the subject of this paper, preliminary results bick
ing a depth-dependent radial blurring to simulate a convewere presented earlier in [27], [28].
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is to be used, an effective way of identifying this subset is
needed. Determining computational bounds for such a method
is dif cult, since this subset is not xed and it changes with
both the deformation and the image location.

Due to the above disadvantages, the following approach
o R i of rst mapping the image pixel locations back to the pre-
‘ ‘ ‘ ‘ ‘ ‘ deformed con guration and then interpolating the reguytarl

@ () © spaced °(V?) at thesaundeformedpixel locations is proposed
Fig. 3. \Voxel data and image plane in (a) nominal, (b) postiieftion, in this paper. For an invertible deformatioh, the pixel

and (c) undeformed con gurations in 2D (circles denote thegenpixels and  |gcationsP can be mapped to the reference volume as:
squares denote the volume data voxels).
P=f Y(P): @)

1. METHODS An illustration of suchundeformedpixels with the reference
volume voxelsV? can be seen in Fig. 3(c). Subsequently, the

Let the spatial voxel locations of @n j k 3D regular """ o 0re0 ) , i
Huxel intensities! °(P®) at these nominal pixel locations are

grid beV?, where the superscript zero refers to this being t 0 /0
initial (time-zero) con guration of these voxels. Assuntet [Nterpolated from “(v®). o

VO are the locations of a given reconstructed volume, in other WVith this method, the required interpolation is on a regular
words, the locations at which the intensities (also knowthas 9rid Of known values, which enables the use of well-studied
gray-valued 1 °(V°) are knowna priori (see Fig.3(a)). Note simple and fast interpolation techmques. Furthermor_a)pis
that the illustrations in Fig.3 are given in 2D for the ease &{°Se€d to the former approach, the inverse deformation needs

presentation, although they represent 3D concepts. to be computed only for the image pixels, which yields a
Let VO be transformed to&/ by the deformatiorf () at a xed number of computations for the synthesis of each frame

given simulation instance as follows: regardless of the deformation and the image location.

- 0
v=fV @ B. Image Pixels in an FEM Tessellation

as shown in Fig. 3(b). Throughout this paper, these twostate \jany deformation models employ a mesh to simulate
VO andV are referred as the pre-deformed and the deformggiplacements during deformation. One of the most common
tissue con gurations, respectively. methods for tissue deformation computation is the FEM, in
_Consider an image, formed by a setroplanar equidistant \yhich tessellations are typically much coarser than médica
pixels P, cutting this deformed volum&. Such an image jmaging resolutions due to computational constraints. iMes
is shown with circles in Fig.3(b). Synthesizing this imag@ased models simulate deformation in the form of node
involves nding the immediate intensity valuggP) at these displacements of the overlaid mesh, so the deformation
n pixel locations for every image frame to be displayed on thg only dened at the nodes. The displacement of other
screen. Note that this operation has a lower bound (f). |gcations within the mesh can be approximated from these
Indeed, any algorithm processing an entire image (even jyiglde displacements. For example, for tetrahedral meshes,
simply displaying it on screen) needs to accessnaiixels parycentric coordinates can be used for this purpose. Gensi

proving this lower bound. the situation in 2D, where an image slices an object
deformed under constraints shown with the arrows in Fig.4(a
A. Accounting for the deformation For each image pixeP; (i 2 1:n), once its barycentric

One approach to the image Synthesis above is to rgt)-ordi-nates with respect to the-deformed elen’ﬂﬁmndo-smg
compute the deformed voxel locatiods and then to nd this pixel are found, they point to the correspondiRg
(interpolate) the pixel intensitie$ (P) within the known in the pre-deformed con guration (details in Section I1}:D

values of | (V) = 1(f(V?). Note that similar deformation Accordingly, for a computed mesh deformation and a given
computations are employed by common elastic registratiffobe position/orientation, our image frame synthesisists
techniques [29], [30]. of the following basic steps:

As seen in Fig.3(b), the major disadvantage of the ap-g; .

. ) i 2fl:ng
proach above is that the deformed vox&sno longer lie
on a regular-grid structure. Consequently, computatlgnal
expensive scattered-data interpolation techniques azdede
Another disadvantage is the need to transform the entirelvo
volume fromV?° to f (V°) for each image frame. This is not
practical. Indeed, the interpolation step does not demhad Figure 5 presents a owchart showing the data ow between
entire volume, since only the voxelgear the image pixels these steps and the data interaction with the deformation
have an effect on their intensity valué¢P). Therefore, it model.
is theoretically possible to compute only the deformatidn o On the one hand, note that steps Il and Ill above are
such nearby voxels—a small subset\bf—as required by the constant-time operations, for which there exist well-gdd
particular interpolation technique used. Hence, if thisrapch fast implementations. On the other hand, fh@nt location

I. Find the elemeng; enclosingP;

Il. Find the locationP? using its barycentric coordinates
and the node displacements &f

lll. Interpolate the given datd®(Vv°) at P
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P For failed predictions, nding the enclosing element is iaga

S the same non-trivial point location problem above. Thefo

an temporary data structure is proposed for each frame such
E that, following the construction of this data structureclea

° and every pixel is located accurately and immediately, ire.

(®]

constant time.

Consider the faces of the mesh elements intersecting the
image plane. Note that the mesh-image intersection is the
only information needed to locate all image pixel points.
Indeed, when moving from a pixel to its neighbour, if no
intersection is crossed, the latter pixel still lies in treme
element, otherwise, it lies in a different element that cen b
deduced from the intersection information. Thus, usingamsc
line approach, we determine to which mesh element each
5 of the pixels belongs by traversing the image. The traversal

(@) (b) occurs along a line parallel to an arbitrary axis, e.g. thialax
o 4 Mesh-based i def ol 4 in oD _ direction of the ultrasound imaging plane.
Cice within 2 meeh that s under forcelcisplacement comtsaand (5 ~_ TMe conventional slab decomposition technique for point
corresponding image pixels mapped to the nominal mesh, whereférence location, also called the partitioning scan-line algarithlo-
volume is given on a regular-grid structure. cates individual (possibly scattered) points in a domaingis
edge comparisons along a scan-line. In contrast, in ourafase

an image domain, pixels are positioned at discrete locgtion

problem of step 1 1s the bottleneck of th's technique. NOtg,j therefore scan-lines only sweep discrete columns.isn th
that the enclosing element of an image pixel depends on b%

&©-0-0-0.f0-0-0

h def : d the i on/ori ion- & t:E'per, this discrete pixel structure is utilized to ef cilgn
mesh de ormation and the image .posmon orientation; @eN&,re the mesh intersection information such that the image
it needs to be computed at each time instaahd cannot be

decided of intersections with mesh faces are discretized at the pixel
eIC' ed o |nte£_ | v the 2D point locati bIocations and are stored for use during line scans. Such a
N computational geometry, the point location Prodgaea structure that substantially accelerates the ovienalje

lem has been studied extensively [31], resulting in comm neration procedure is built temporarily prior to evegniie
techniques such aslab decomposition[32], Kirkpatrick's being synthesized

algorithm [33], andtrapezoi_dal mapsHOV\_/ever,_onIy a_feW of Let us demonstrate a simple 2D case in Fig. 6(a). Assume
these methods extend to higher dimensions, i.e., pointitota that the pixels just below the mesh intersections, shown

in 3D spatial subdivisions. Besides, most techniques facus with stars, are identi ed and marked with the corresponding

elther locating a single point or a get O.f points scatterad_r OVelement numbers as depicted. For a downwards traversal)(sca
the given domain, whereas the points in our case—the im

el lar] d 2D bl ; that the image, it is inherent that any pixel encountered adter
PIXEIS—are reguiarly-spaced on a pianar surtace thal s, yeq one is guaranteed to be in that marked element until

embedded in 3D. Consequently, exploiting this feaure of O4nother marked pixel is encountered. Implementing sucliea da

problem_ tol build |n|tet_rm<|ad|af[|<|a datal Strt'Cttl:]reS for Iocﬂg structure to store the discretized mesh intersectionsdésha
IMage pixels cumuiatively will accelerate the process S pixels) requires at mosD(n) storage. Although in practice

tially. Indeed, any conventional method of locating eachibo these marked pixels will be a small fraction of the image pix-

|nd|v.|dual'ly would not gllow real-'t|me processing .Of typic _els, allocating an array the size of the image is computalipn
med_lcal_ 'mage resolutlons. For instance, the point IO(‘f'at'c?nore ef cient and is not demanding on today's computers. So,
routine in the QuickHull package [34] locates the 90K pixel e discretized mesh intersection information can alsoelea s

of a tygnc?!r:ma?e prehsented '? EF” Resul:cs section in .ov:er. an added property to each pixel, specifying whetherlg fal
seconds. Therefore, the rest of this paper focuses on @Rrloi ;. - 2.0 and on which element's face.

this spatial relationship of image pixels in order to acrake Finding the pixels to mark in a 2D case, e.g. the darker

step | above. circles in Fig. 6(a), involves solving for line-line intextions
o _ _ _ of element edges with the image. Similarly, the intersetio

C. Fast Equidistant-Point Location on Image Planes in 3D 4t 3D element faces with a planar image can be found in 3D

Due to the 3D mesh elements being much larger than thsing the deformed-mesh node positions and the image plane
image pixels, numerous neighbouring pixels are enclosed éguation. However, further processing is required to ditoe
a single element that is cut by the image. This fact can laad mark them on image pixels.
exploited to predict the enclosing element of a pixel from it Tetrahedral elements are chosen for presentation in this
pixel neighbours. Although this yields a signi cant speedrgy paper due to their common use in tessellations. A tetrahe-
it is still not fully taking advantage of the known grid sttuce  dral element intersecting the image is shown in Fig. 6(b).
of the pixels. Even though most predictions will succeedheaNote that a tetrahedron may intersect a plane in one of
prediction has to be veried by an operation suchpasnt- two possible con gurations illustrated in Fig. 6(c). Usitige
in-tetrahedron checkrequiring many additional operations.deformed node positions and mesh connectivity, the element
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elasticity pre-deformed mesh
model |
v
probe/tool deformed Locate ima .
: : ge Map pixels to .
manipulation simFITa':{lion mesh pixels in 3D pre-deformed volume Interpolate| Image
u deformed mesh using shape functions
A |
probe position

Fig. 5. Basic steps of the proposed algorithm.

@) (b) (©

Fig. 6. (a) Marked image pixels close to projections of elentmrtlers (stars) on a 2D mesh; (b) a tetrahedral element intergehe image plane; and
(c) two possible con gurations for a planar cross-sectiéradetrahedron with either 3 or 4 edges intersected.

edge intersections shown with stars in Fig.6(b) are founuxels of a line depending on the relative slopes of neighbou
easily solving line-plane intersections. Subsequentig, line ing line segments. For instance, consider the central ftxel
segments connecting these stars need to be discretized stmabled in Fig. 7(d), which is involved in the discretizatiad
marked on the corresponding pixels. Recalling our downwarboth the elementss ande;. If this pixel were to be marked
scan-line direction, only thapperline segments (shown with as belonging taes, then our line scan would mis-locate any
darker lines for the instance in Fig. 6(b)) need to be markegixel in the column belowP. Such discretization con icts,
This is due to the fact that the top-half of any cross-sectiavhere the same pixel is involved in the discretization of enor
has to be rst crossed by the scan-line in order for it to readhan one edge intersection, may occur at a substantial numbe
the interior of the cross-section. Similarly, once leavihgs of pixels and each may involve many edges. Therefore, a
cross-section, the top portion of the next element below wihechanism is required to ensure that such pixels are marked
be crossed indicating that the up-coming pixels do not lgglogorrectly. In this paper, we resort to a methodagbologically
to the previous element anymore. Therefore only marking tkertingall the tetrahedra cross-sections prior to marking them.
edge of elements in the direction of an incoming scan-line The details are explained in Appendix A.
suf cient.

Let us demonstrate this pixel marking for a tetrahedral _ )
mesh sliced by an ultrasound image plane in Fig.7. TH& Finding the Pixel Intensity Value
3D view in Fig. 7(a) shows the element cross-sections. TheEach 3D pixel location is mapped to the reconstructed image
discretization of these face intersections on the imagelfix voxel volume, where its intensity can subsequently be -inter
which is the above-mentioned intermediate data strucfare,polated. The deformation part of this mapping is addressed
seen in Fig. 7(b). Part of this structure is illustrated eg¢a using the barycentric coordinates with respect to the siulp
in Fig.7(c), where the actual face intersections are deg@ictelement. The overall mapping from the discrete image plane
with dashed-lines and their pixel discretizations withotwed coordinates to the reconstructed volume coordinates can be
circles. The element numbers marking these pixels are als@ressed as a combination of linear transformations agrsho
labeled in the gure. in Fig. 8. In this gure, Ty p is the image-to-mesh transforma-

Bresenham's line drawing algorithris used to discretize tion, which is determined by the probe position/orientatmd
these segments on the grid of image pixels [35]. Note thla¢nce is constant for all pixels of the same image frafge.
it is possible for more than one intersection segment to e the deformed-to-nominal mesh transformation de ned by
discretized on the same pixel. Although this is more likely tthe node displacements of the enclosing elenegmtue to the
occur at the corners of the polygons, it can extend to modeformation. This transformation is constant within amedat
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Fig. 7. (a) A mesh and cross-sections of the elements sliceebintage simulated for an ultrasound probe; (b) element boigsddiscretized and marked
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Fig. 8. Transformations that map a pixel to the reference veakime, where an interpolatiog( ) nds its intensity value.

for the mesh-node displacements of that given instant andThe intensity of a pixeP; is found by interpolatindl'sP; in

is calculated using barycentric coordinates [36] as dieedri the reference voxel data. This interpolation is denotedhey t

in Appendix B. operatorg( ) in Fig. 8. For an example of using the nearest-
Note thatTyp changes with probe motion, whered@s, neighbour interpolation (NNI), if we assume thetund( )

with deformation. Consequently, a cumulative transforomat function gives the nearest discrete reference-grid lonatd

Ts = Tes TV P (3)

can be computed for any given elemest during the im-

a point, thenl °(round(TsP;)) is the intensity of the pixel
sought.

age synthesis of a given probe position/orientation within The transformations for all the intersected elements are
a known/simulated deformation. Since any pixel within thafomputed while the set L is compiled. Subsequently, foryever
element is subject to this same transformation, it is cated edge crossing of the scan-linegarrent transformatiorpointer

only once per intersected element per image frame. can be switched to point to the transformation matrix of the
current enclosing element. Our proposed algorithm for the
E. Summary of the Proposed Algorithm synthesis of one image frame can be summarized as follows:

For the synthesis of every frame, rst the set of elements
that are intersected by the imaging plane is compiled. This

setL is composed by traversing the elements in the plar
using a 3D mesh element neighbourhood list, which is pr
compiled of ine as soon as a 3D mesh is available. Note th

the neighbours of an element do not change with deformatign

Therefore, given an intersected element, such a list esaisle
to deduce its neighbours that are also intersected by dhgerv

which face of the current element intersects the image plane,

The setL is then sorted topologically and the top-halve
of the element projections are discretized and marked

the image in that sorted order using Bresenham's algorithm.

;trelations.
2. SortL topologically.

order.
4. Compute the transformation, for each elemengs 2 L
| 5. For eachimage pixelP;
;n 5a. If P; is marked with elemeng,
then set the active transformatidnto Tg
5b. Find the intensity oP; by interpolatingl © at T P;

s

;Ul Compile the set. of intersected elements with thei

3. Mark the cross-sections &f on the image in the sorted

-

Figure 7(b) demonstrates an instance of marked image pix
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F. Computational Analysis %

In the algorithm above, the loop in stépprocesses every 335
image pixel, while the previous steps are used to compile the|: v
intermediate data structures to accelerate this step.i@ans *° @
an n-pixel image intersecting a total oh elements in a 3D ‘
mesh and recall thah m for typical medical images o
and FEM tessellations. Note that the synthesis of an image (a)
requires some form of processing of each of its pixels.
thus the computation of any synthesis algorithm has a low
bound of ( n). Nevertheless, the individual computationg & F , : ‘
cost for every pixel may render an algorithm infeasible ¢ T )% < . '
demonstrated in Section IlI-B. Indeed, a method that is st N§©  HE
optimal for our application may demand over 30's just to leca".#"! ﬁ\ N
pixels in mesh elements. The computational analysis of the (b) (©)
methods and the data structures introduced in this paper B9 (@) The phantom design (in mm), (b) its mesh, and (c) theéma
presented below. acquisition setup.

Compilation of the intersected element &estarts from an
arbitrary initial intersected element, such as one toughire
probe. Finding this initial element, which can be done simplnd saved for use in the online simulation, where the probe
by traversing the top surface of the mesh, takes insignicanurface is applied as displacement constraints on the nodes
time. Once one intersected element is found, the travefsaltioat are in contact with it so that the displacemantsf every
the rest using a pre-compiled neighbourhood list in 4tégkes node are calculated at each iteration. Modeling such ctntac
constant time per element. Computing each transformatiand achieving conforming meshes with contact surfaces is an
in step 4 is also a constant time operation per elemendctive eld of research with various approaches having been
Topological sort takes linear time with respect to the totaroposed for different deformation models (e.g., local Imes
number of cross-sections and partial relations. Nonetkela re nement [36], multi-resolution meshes [37], condensati
our case the relations are set by the shared edges betw@nforce coupling [6]). In our experiments, it was assumed
the m cross-sections and thus the number of such edgestiat the contact locations were known apriori so that thehmes
bounded from above by a multiple of. As a result, all the was generated ensuring that nodes do exist on those irgsrfac
stepsl, 2, and4 compute inO(m) time.

The computation of ste, where the pixels on cross- IV. RESULTS
sections are marked, depends on various implementation . ) o
choices, such as the specic line drawing algorithm. Ney- FOf our experiments, a 680 90mm tissue-mimicking

ertheless, it can be approximated by the number of pixaglqtin phantom, having a soft cylindrical inclusion of 261m '
actually marked the image. This can in turn be regardgbd'ameter' was constructed. The phantom was meshed using
M rows of elements being marked b he GiD meshing software [38] yielding 493 nodes and 1921

as approximately m o . )
Bresenham's algorithm on their quer halves. Considering@rahedra' The elasticity parameters for the FEM simuati

row of elements has qn the order 'of pixels to be marked, Were set to the approximate values known for the gelatin con-
step3 thus requiresi)(%nm) time to compute. " centrations used. This phantom was imaged using a Sonix RP

Note that the signi cantly lower computational order oplitrasound machine from Ultrasonix Medical Corp. with a

steps 1-to-4 justify the anticipated speed gain during SteBnear pro_be mqunted on a precision motion s_tage. _Vertlcal
5. In particular, stepsa of identifying the enclosing e|emem|oarallel slices with 1 mm separation were acquired with care
reduces down to a single memory access while, in Step not to deform the phantom surface. The dimensions and the

the transformation of pixels bfis from discrete 2D image mesh of our phantom and our imaging setup are seen in Fig. 9.

coordinates to the 3D reconstructed volume requires only
12 multiplications per pixel.

Images, that physically span an area of 3778 mm, were
acquired at a resolution of 22@110 from the display pipeline
) of the ultrasound machine. This is a typical B-mode resoiuti
G. Deformation Model that this ultrasound machine outputs to the screen for trengi

The deformation model employed in our particular impleprobe and default imaging parameters. For our experimént, 7
mentation is a linear-strain quasi-static nite-elememdal. images were collected at a 1 mm interval while moving the
For this, rst a mesh representation of the region of interes probe in its elevational axis. Accordingly, our reconsteac
obtained. Using the Young's modulus and Poisson's ratios wéxel volume is chosen to be the collection of these parallel
the materials involved, a stiffness matkx relating the nodal slices, which constitute an average of 8750 voxels per eleme
displacements of this mesh to the nodal forcésis compiled in our particular phantom mesh.
such thatf = Ku [36]. Fundamental boundary constraints Deformation was applied by indenting the phantom with
(the xed nodes of the mesh) are next applied on Hisby the probe. It was simulated using the FEM with the bottom
zeroing its corresponding rows/columrs. is then inverted side of the phantom being the xed fundamental displacement
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(9) (h) (i) ) (k) v

Fig. 10. Simulated (upper) and acquired (lower) images wih &nd 10 mm indentations for probe tilted at (a-c) @d-f) 15 ; (g-i) 30 ; and (j-I) 45 .
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Fig. 12. Change of frame synthesis time when varying the numbgixels
Fig. 11. Normalized mutual information (a) and sum of squardf@r@inces n (+) and the number of intersected elememtgx) expressed in percentages
(b) of the images simulated and acquired at 1 mm incremental prof@®-  of the full-size images presented above.
tations (the values d0; 0], which match perfectly, are not presented here to
preserve the colour map).

of pixels the same. Note that, effectively, the former alter

boundary constraints. The probe indentation was applieal a8 for @ constantm and the latter altersn for a constant
displacement constraint to the mesh nodes coinciding wigh tN- Consequently, the former decreases the pixel density per
probe on the top surface. In the FEM, the Young's moduli wefd€ment, i.., the number of pixels falling into each elemen
set to 15KPa and 5KPa for the background and the circuf©SS-section whereas the latter increases it. As presente
inclusion, respectively, and a Poisson's ratio of 0.48 wd@ Fig-12, the number of pixels was observed to determine
used for both. The ultrasound images were then synthesi#B8 speed in th®(n) manner as expected, whereas the number
using the techniques presented. Some of the acquired and@httersected elementa exhibited little effect on speed. Note
simulated images are presented in Fig. 10. that the slope of this linear dependencyrofs de ned by the
The images of a simulated probe indentation were corlidden cost of processing each pixel (step Our approach

pared to the images during an identical physical indemtati@' introducing additional steps and data structures in orde
experiment using theimutual information(MI) and sum of reduce th_|s hidden cost to a few multiplications is the key to
squared differences (SSD). 11 images were both simulafégFelerating such a method.
and acquired in 1 mm steps up to a 10 mm compression. Thel he technique above has been implemented for interactive
Ml and SSD between each pair of simulated and acquirggrasound visualization with simulated deformation asrse
images are presented in Fig.11. In this paper, to presémtFig. 13. In this system, a SensAble Phant¥nPremium
these MI values as a ratio of an absolute measure in @fivice mimicking the probe is manipulated by the user while
experiments, the values were normalized with the average fIvisual interface displays the tissue mesh and the probe
of two images acquired 1 mm apart in the elevational directioln 3D. At the same time, the ultrasound images are also
As seen in Fig. 11(a), the simulated images and the acquig@thesized by our algorithm and displayed at real-timaalis
images for the same indentations have the highest MI af@ies (over 40 Hz even when additional computation time for
the lowest SSD, as expected. This shows that the simulatioRM simulation and haptic feedback are added on top of the
can successfully synthesize an image closely resemblirgla .3 Mms/frame image synthesis time). A simple feedback force
one. For reference, in our phantom the average Ml betweenmal to the nominal tissue surface and dependent on the
ultrasound image and one that is shifted vertically by oixetp current penetration depth was applied to user's hand. The
is 117% of the average MI of two images 1 mm apart (formin@robe indentation was modeled as displacement consti@ints
the normalization factor) and it is 67% between two acquirdhe closest surface tissue nodes and the mesh deformaton wa
images with 1 mm probe indentation, when normalized &mputed using a pre-computed inverse stiffness matrix.
de ned above. For an in-vivo assessment of this simulation method, B-
The method can generate slices of given 2200 resolution mode images of the thigh of a volunteer were also simulated.
using the NNI in less than 13ms on a 1.87 GHz Pentiufthe 3D volume was reconstructed from B-mode images ac-
computer. Using tri-linear interpolation (TLI), the simatibn quired by the same Sonix RP ultrasound machine. The spatial
of a B-mode frame on the same computer takes approximat@Rsitions of these images were recorded using a magnetic
25ms. In order to evaluate the effect of the number of imag@sition sensor, Ascension MiniBIRD, attached to a linear
pixels n and the number of intersected elementson the ultrasound probe so that a free-hand scan can be conducted.
computational speed, the frame synthesis time for the NNipe anterior upper thigh of a volunteer was then scanned
was measured using different image parameters. As preser@ seen in Fig. 14(a) to a depth of 45mm by translating the
by the computational analysis, a linear dependencynon probe orthogonal to its imaging plane similarly to the ploamt
and a negligible effect o were expected. First, the imageexperiment. The spatial arrangement of the collected isage
resolution was decreased at 10% decrements of the origifah be seen in Fig.14(b). The volume represented by these
resolution while keeping the physical span of the image &ammages is then resampled on a regular grid of 0.1 mm spacing
and then the physical image span was decreased at 10949 the Stradwin software [26].
decrements of the original span while keeping the numberConsidering the thigh tissue locally, the femur is the xed
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Fig. 15. Simulated ultrasound images of the thigh with 0, 2 Famen indentations (shown with arrows) for probe tilted at Y&c and (d-f) 30.
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Fig. 13. Real-time ultrasound scanning simulator.

@) (b)

Fig. 14. (a) The setup for in-vivo data collection and (b) theatial
arrangement of the collected ultrasound images.

femur surface. For the purpose of this paper, all soft tissue
was given a xed Young's modulus of 15 KPa and a Poisson's
ratio was set to 0.48. Ultrasound images of two differenbpro
orientations were simulated using tri-linear interpaati Sim-
ulated images at different indentation depths are seergif%i
where the anterior thigh anatomy is observed to deform under
probe pressure.

V. DISCUSSION

In the literature, there have beemplane image deformation
strategies for image registration, deformation correctior
volume reconstruction [10], [25], and a training simulatio
for DVT [18], [23]. However, these 2D approaches cannot
simulate out-of-plane deformations. Even if the deforovati
is driven by motion only in the imaged plane, the bound-
ary conditions may couple image plane motion with motion
orthogonal to the imaged plane, and such methods simply
cannot account for motion orthogonal to the imaging plane.
Indeed, consider the case of brachytherapy, where thegpeost
is imaged with the transversal crystal of the endo-rectal
probe while the needle may push the prostate through the
imaging plane (see Fig. 1(c)). For such deformation induced
orthogonally to the imaging plane, 2D approaches simply do
not apply and our method becomes essential.

Our choice of phantom geometry aims at presenting out-of-
plane deformation. During the indentation experimentshwit
the probe tilted, not only do the phantom structures conspres
but also the image plane moves through the volume in its
elevational axis.

Our simulation method is not limited to linear imaging
geometry, but can also accommodate other probe geometries
such as sector probes. Indeed, regardless of the transducer
crystal geometry, the conventional format for displayipm-

displacement boundary condition, that plays a major role @essing, and storing B-mode images is Cartesian-based in
the way the thigh deforms. The femur anterior surface wasmpliance with the common screen hardware and image
segmented from a deeper ultrasound scan of the same thigbcessing algorithms. Consequently, our method simailate
region. An FEM mesh of 3805 elements and 997 nodes wiie pixels on a regular-grid regardless of the original data
generated using the GiD software and displacement boundapguisition format, similarly to other interpolation-leasim-
conditions were de ned by spatially xing the nodes on theglementations in the literature. The simulation of a sector
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image, for instance, can be accommodated in the currdwtve to match the extent of the FEM mesh. For instance, in our
technique by simulating all pixels internal to the boundingxperiment the bottom part of the phantom was not imaged for
box of the non-rectangular image footprint and then maskitige reference volume due to the depth setting of the probe and
off the pixels lying outside the actual sector image region. hence the black regions appear at the bottom of the simulated

Locating the points of a 3D grid was studied in [39] tamages when indentation is applied. However, the defonati
resample a 3D mesh to use in the nite difference method fesimulation was considering the entire phantom volume for an
simulating seismic wave propagation. However, note that veecurate simulation.
are interested in a 2D plane that intersects the mesh iranpit  Observing the relatively small effect of the number of
orientation. Furthermore, our case involves deformed e shintersected elements on synthesis time in Fig.12, it is seen
and registering an image plane manifold between differetitat more elements on the plane will not be detrimental to
mesh con gurations. the simulation. Consequently, techniques such as locahmes

A deformation simulator must have two components: orre nement will not impede the speed, since m is still
that predicts how tissue deforms based on a physically vatidlid. Indeed, one can analyze the data on such a gure
model and one that can display the result at a high enough estimate maximum image resolution for a given mesh
frame rate to match the simulation context, i.e., be “remkt. simulated on a particular machine.

Considering the former, many medical simulations employ In general, 3D ultrasound reconstruction involves resam-
the FEM to produce the mesh deformation in response pting the acquired images in order to generate volume data on
tissue forces or changes in the tissue constraints. Comptad a grid-structure. In our phantom image collection, ulttasb

this FEM simulation, the user of a medical simulator shoulslices were parallel and relatively dense creating a requid,

be able to examine the simulated tissue in a manner thathgrefore no further processing was needed for recongiruct
accurate and real-time. The techniques presented in tperpaFor the in-vivo data, the Stradwin software was used to
serve to this latter need. resample the data in a grid structure. In this paper, theesear

It is important to realize that our presented method iseighbour and tri-linear interpolations were employedtia t
independent of the FEM simulation and does not introduce amyage synthesis step. Other interpolation schemes are also
additional approximations and errors beyond those intrinsaapplicable depending on the computational limitations for
to the FEM simulation, i.e., there is no trade-off betweeachieving a required frame-rate in a particular implemigra
image synthesis acceleration and image quality. The imageNote that, for signi cantly large deformations, the acepair
synthesis method uses the same mesh and the same interoid- the simulated images may not match exactly using the
tion functions as the FEM simulation, and the re-sampling igear-strain approximation due to rotationally-varidimear
performed over a grid of the same resolution as the originglements. Nevertheless, there exist numerical treatmients
medical image data while keeping the highest possible imatie literature to achieve rotational invariance [40]. Noear
resolution given the reference image data set. Considénimg elasticity with dynamic models has also been proposed in
B-mode image synthesis in particular, the only assumptioine literature [4]. All these models provide mesh node dis-
employed is the isotropy for the ultrasound interaction eiod placements at given time instants, which can be used by our
In addition, note that the method introduced for image pixétchnique to synthesize images as in the given implementati
location gives an exact solution, not an approximation.nSudloreover, even other deformation models that provide node
a method is superior to the previous techniques in locatidgsplacements, such as nite differences or spring netaork
regularly-spaced points at the expense of a small additioman be used since the barycentric transformation propasesi d
storage and its initialization time. not assume, nor is bound to, any property of the FEM.

Our method aims at the development of a real-time re-We assume that linear interpolation is used within the
alistic image synthesis technique, which can be integrate€EM mesh, therefore 4-node tetrahedra were employed in
with training systems that involve tissue deformation. iist our simulation. The interpolation accuracy is maintaingd b
context, the simulated images were found to be adequagelucing the size of the mesh elements as necessary. The
for medical simulators by physicians following a prelimipa presented techniques still apply to deformations computed
visual inspection. This will be assessed further by expdmy higher-geometry elements, such as 10-node tetrahegra, b
sonographers in speci ¢ clinical procedures, such as ptestusing only the corner nodes for image synthesis. Consigerin
brachytherapy, in the future. element geometries other than tetrahedra, e.g. hexagons, o

As explained in Section llI-F and justi ed by the results irmeshes with mixed elements used for FEM deformation, note
Fig.12, the frame synthesis time of our simulation depentizat the image plane cross-sections of such convex polghedr
mainly on the pixel number, but is also affected by thare also convex. Thus, these cross-sections can still bedfou
number of elements intersecting the image to a small degraad marked using the techniques presented. However, an
Nevertheless, note that it is independent both from theentalternative undeforming transformation will be neededdad
physical span of the FEM mesh and from the total numbef using the barycentric coordinates.
of nodes/elements in it. It is indeed further independeminfr  Our phantom has the same cross-section longitudinally,
the entire physical span of the reconstructed image data skerefore two 1 mm-apart images look (and should look) the
assuming it ts in the computer memory. Consequently, muctame to the human eye. Although their speckle pattern may
larger tissue representations can be handled succes#fldty differ, for an observer they both carry the same information
note that the extent of the reference image volume does adiout the location, size, and other features of the inclu-
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sion. The MI of this minimal and practically in-differentile  be satis ed.
speckle pattern change is taken as the base for normatizatio Our method can be extended for applications and anatomy
Note that, once the image is marked, the processing infwhich artifacts are prominent by acquiring multiple reeo
each and every scan-line is independent of another. Tkisuctions of the same volume where the images are collected
allows for completely disjoint synthesis of each scanslinat various probe incidence angles. Subsequently, for each
which is a signi cant advantage for parallel processing dfame simulation, the reconstructed volume acquired by the
the computationally intensive step. For instance, on the closest probe orientation to the simulated probe will beduse
emerging multi-core CPU architectures, scan-lines canise dThis will effectively maximize the likeness and direction
tributed among CPU cores. Moreover, the simple computatiofi artifacts in simulation. Note that such a modi cation
scheme of stefd is highly aligned with the SIMD (single introduces additional memory storage cost due to multiple
instruction, multiple data) execution model for paraflation reconstructed volumes; nevertheless, it does not incrieese
on recent GPU computation/programming technologies, suaterall computational complexity of the approach.
as CUDA [41].
The approach presented in this paper is an enabling tech- v|. CONCLUSIONS AND EUTURE WORK
nigue for many medical simulations and in particular for any
ultrasound simulator that will allow for tissue deformatio
Fast image simulation is also essential for certain defbtena

In this paper, a technique for synthesizing planar images in
deformed meshes of tissue models was presented. The method

registration techniques, where image slices of a deformég. > the 3D image data of the pre-deformed tissue. A pixel

. numeration technique originating from common scan-line
volume are compared to a set of reference images whj : . S

. : . L . .algorithms was adopted to enable fast identi cation of mesh
the deformation constraints are being optimized iterftive

Studying accelerated image synthesis is of signi cant aaluelements enclosing each image pixel during deformations

especially in such registration schemes, where the géoeralglven by mesh node displacements. This allows the genaratio

. i . ) of .medical images of considerable size at frame rates that
of sliced images through mesh-based deformations is one_of " . - . .

; : . . . _are suitable for real-time applications. This techniques wa
the computationally intensive steps. Faster synthesidsis a

crucial for the processing of high resolution images. Aéastmplemented to simulate B-mode images of a deformable

. . . rphantom and anterior thigh of a volunteer. Synthesized @vag
algorithm allows for the generation of possibly more thae o : . 4
slice at a time instant (such as to render the volume in 303 probe indentations were then compared to the correspgndi

and also facilitates the presentation of more than one rii;z:dal| ages acquired by physically deforming the phantom. A-real

; i o : . .~ “time ultrasound simulator implemented on a haptic device wa
to a trainee during a training simulation (such as additiona

also demonstrated. The results show that the proposed thetho
deformed MR and/or CT to better understand the anatom - : .
scanned) produces realistic-looking B-mode images. The methods pre

This paper treats the problem of image simulation wit ented are easily adaptable to other imaging modalities and
eformation models.

deformation using an interpolative approach due to real-
time processing limitations and parametrization dif ¢et of
generative models. An ultrasound image is indeed a product o APPENDIXA

very complex wave interactions in the tissue. In an intepol RESOLVING PIXEL DISCRETIZATION CONFLICTS

tive approach, instead of attempting to model this complex The correct element for marking a pixel in con ict depends
wave behaviour, image features (and similarly artifact®) aon the scan-line direction. Normally, a pixel on an edge
reproduced and placed in simulated images at the 3D locatiatersection must be labeled by the element which a line
where they were originally acquired. Similarly, our teadfue scan passing through that pixel is just entering. For ircgtan
assumes that the B-mode image of a deformed tissue regiomi&ig. 7(d), with respect to our chosen scan-line directtoe
similar to the properly deformed version of a B-mode imaggixels immediately below pixdP belong toe;, thusP should
taken prior to deformation. However, the visibility of anteal be labeled as 7.

image feature (e.g. a sharp tissue interface) or an ariifet To resolve such discretization conicts, we rst sort the
mode imaging may depend on the direction of the incidence afoss-sections prior to marking them. Discretizing thessro
the ultrasound beam, whereas the visibility, with an intéap section edges on image pixels given a suitable order enables
tive approach, depends on the direction of the original dagach cross-section label to over-write a previous one hyriga
collection regardless of the simulation-time probe oa¢ioh. the desired label on the pixel in the end. To formulate such
Therefore, interpolative B-mode techniques may not be-opé sorting so that the last value marking a pixel is the correct
mal or applicable for certain tasks. Nevertheless, theystite one, consider a pair of neighbouring cross-sections. A-scan
of great value in the medical eld and are employed in variouge passing through both of these will visit rst one andnhe
B-mode applications such as volume reslicing in commercile other, since they are convex polygons. Furthermore, the
3D ultrasound machines. Our approach equips the user witbrader will be the same for every scan-line traversing both
fast and powerful tool for a range of applications from tiiagn cross-sections. Note that, for a scan-line to correcthatec
simulators to fast deformable registration, but only aftex the pixels below a corner (or, similarly, an edge) shared by
nature of the simulation method and its related limitatiortfiese cross-sections, those shared pixels need to be marked
are understood. Note that, as opposed to ultrasound, fer otthe last-traversed cross-section. In Fig. 7(}),is the latter-
imaging modalities such as MR, the assumption above magversed element cross-section. Theref@es edges have
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Fig. 17. (a) A deformed element at a time instargnd an image pixel X
lying within; and (b) the nominal pre-deformed geometry of gase element
with the corresponding undeformed pixel location.
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to be discretized aftegs's, consequently, label 7 over-writes x = Cr @)

label 6.

This traversal precedence criterion is indequhatial order-  So that the barycentric coordinates can be foundasC *x.
ing relation in-between all the pairs of neighbouring element
cross-sections in the image plane. Let denote this relaton  The pointx?® seen in Fig. 17(b) corresponding to the same
such thatg < e; indicates thag is traversed later thag by barycentric coordinates in the nominal pre-deformed cen g
any given scan-line. Due to the convex cross-section ge’gmeuraﬂon of the same element can also be written similarly as

this relation is transitive such that: x? = COr for the nominal node positions @f. As a result,
this corresponding nominal location is found as:
(el <ej) and (eJ <ek) :) (ei <ek) (4) x? = C%C x 9)
0o .
Therefore, all cross-sections can be represented diyeated XD = Tex: (10)

acyclic graph[42], where the intersected elements are the
nodes and their traversal precedence orders are the directe
graph edges connecting the pairs of neighbouring elements] G. Reis, B. Lapp, S. Kohn, C. Weber, M. Bertram, and H. Hageri;

i i sualization in Medicine and Life SciencesSpringer Berlin Heidelberg,
Such a graph can be sorted linearly into a global (total) orde 2008, ch. Towards a Virtual Echocardiographic Tutoring tys pp.

that satis es every given partial order relation. This gduare 99-119.
is calledtopological sorting[42]. Note that there may exist [2] H. Maul, A. Scharf, P. Baier, M. Wstemann, H. H. Gnter, G. Gebauer,

more than one such global ordering, any of which can be 2and C. Sohn, “Ultrasound simulators: Experience with saoér
: . and comperative review of other training systemdltrasound Obstet
used for our purposes. For example, the illustration of£ros  Gyneco) vol. 24, pp. 581-585, 2004.

sections in Fig. 16(a) has a graph as shown in Fig. 16(b), arigl M. Bro-Nielsen, “Finite element modeling in medical VRJournal of
; ; ; ; . the IEEE vol. 86, no. 3, pp. 490-503, 1998.
one pOSSIbIe orderlng of this graph is as follows: [4] G. Picinbono, H. Delingette, and N. Ayache, “Non-lineamisotropic
elasticity for real-time surgery simulationGraphical Models vol. 65,
ep<er,<eg<e;<eg<eg<ez<es<eg<er<en pp. 305-321, 2003.

(5) [5] O. Goksel, “Ultrasound image and 3d nite element basesutsdefor-
mation simulator for prostate brachytherapy,” Master's iydgniversity

of British Columbia, 2004.

[6] J.Berkley, G. Turkiyyah, D. Berg, M. A. Ganter, and S. \Wegst, “Real-
time nite element modeling for surgery simulation: An applicat
to virtual suturing,”IEEE Transactions on Visualization and Computer

APPENDIXB Graphics vol. 10, no. 3, pp. 314-325, 2004.
UNDEEORMING USING BARYCENTRIC COORDINATES [7] J. C. Bamber and R. J. Dickinson, “Ultrasonic b-scanniagomputer
simulation,” Phys Med Bial vol. 25, no. 3, pp. 463-479, 1980.
L. . L. [8] J. A. Jensen, “A model for the propagation and scatterihgltoasound
The 3D position of a poink =[xy z]" inside a tetrahedral in tissue,”J Acoust Soc Apvol. 89, pp. 182-191, 1991.
elemente, seen in Fig. 17(a), can be expressed as follows: [9] R. W. Prager, A. Gee, and L. Berman, “Stradx: Real-time &sitjon
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