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ABSTRACT

Segmentation via atlas registration is a common technique in med-

ical image analysis. Devising estimates of such segmentation out-

come has been of interest in cases with multiple atlases, both for

single-atlas selection and for multi-atlas fusion. This paper studies

the estimation of expected Dice’s similarity metric for registering

atlas-target pairs, by employing registration loops with models of

such metric (error) accumulation over these loops. In this frame-

work, the use of registration information also from unsegmented im-

ages is proposed and is shown to outperform using segmented atlas

images alone. We demonstrate a fast, memory-efficient implementa-

tion and single-atlas selection results using a CT and an MR dataset.

Index Terms— Quality assessment, registration circuits.

1. INTRODUCTION

Image registration is of major interest to several medical applica-

tions. Registration is the act of establishing spatial correspondences

between two images, either in the form of sparse corresponding land-

marks or as a dense spatial mapping. Automatic registration meth-

ods often employ optimization of a voxel similarity metric (VSM).

However, VSM itself does not indicate any estimates or bounds on

true registration fidelity [1]. This is due to several reasons such as

similar appearance anatomy, homogeneous tissue regions and partial

volume effect. Nevertheless, fidelity can be assessed through inde-

pendent measurements, e.g. selecting landmarks or segmenting tar-

get images, for evaluating a registration method or a particular case.

However, this is impractical to perform on each target image follow-

ing an automatic method. Registration is often employed precisely

to avoid such overhead of labeling target images or in cases when

the relevant anatomy is not identifiable in the target image modality.

Consequently, a post-registration VSM is typically the only output

measure to judge registration fidelity.

Registration uncertainty has been studied in the literature using

voxel-statistics methods such as Cramér-Rao bound [2] and boot-

strap resampling [3]. Detection of displaced edges between regis-

tered and target images using the state-space of multiple Gaussian

filters on intensity difference images was studied in [4]. For assess-

ing a group of registrations, voxels-statistics based on active appear-

ance models generated from registered images was used in [5]. Reg-

istration fidelity cannot be precisely implied from such voxel-based

criteria either, similarly to discussion on VSM above. Another ap-

proach to fidelity estimation focuses on the consistency of registra-

tions among themselves. For instance, a pairwise consistency re-

quirement is that the correspondences between two images when

registered in either direction shall be unique. This was exploited
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in devising a symmetric registration method in [6] and as an atlas

classification metric in [7]. Such consistency between three serial

intra-patient MR images was used to assess the validity of results

in [8]. Consistency was measured as the root-mean-square displace-

ment residual of uniformly distributed points transformed through

a triangular loop of three registrations (also known as a registra-

tion circuit). Woods et al. evaluated their registration suite for intra-

patient registration by considering a norm of such triangular consis-

tency over all possible loops in a given set of images [9]. A similar

approach was later used to compare VSMs for serial brain MR reg-

istration [10] and to compare nonrigid registration methods [11].

Such registration loops were recently employed by Datteri and

Dawant to estimate individual registration fidelity; target registra-

tion error in [12] and Dice overlap of resulting atlas-based segmen-

tation in [13]. This technique employs an assumed analytical model

of registration error accumulation over a loop. An aggregation of

several such loop criteria in a system of equations then leads to a

least-squares solution for individual fidelity metrics. In [12, 13], im-

proving multi-atlas to single-target registration has been studied with

the goal of atlas-selection and fusion. In this paper, we devise a new

solution technique for this method and show that it benefits from es-

timating several targets concurrently by leveraging information from

inter-target registrations.

2. METHODS

Let each image in a set of n images be Xi for i = 1..n where ℓ

of these images are the so-called atlases with known ground-truth

segmentations Si for i=1..ℓ<n . Let Tij be the transformation (de-

formation field for nonrigid registration) resulting from the regis-

tration of Xi to Xj such that Tij(Xi) ≈ Xj as seen in Fig. 1(left).

Then, based on a known segmentation Si of image Xi, a segmen-

tation Si
j can be estimated for Xj using this transformation, i.e.

Si
j = Tij(Si), namely the single-atlas segmentation. Similarly, typ-

ical multi-atlas segmentation combines (fuses) multiple such seg-

mentation estimates based on some confidence on each one. Thus,

determining such confidence on each individual registration then be-

comes crucial. Such ranking of atlases is also essential in single-atlas

segmentation to select the optimal atlas (image retrieval) for a best

segmentation outcome. Below, we show a method for such belief

assignment and our contributions to it, which (i.) improve accuracy,

(ii.) reduce computation time, and (iii.) reduce memory footprint

significantly so that much larger image sets can be processed.

For three images {Xi, Xj , Xk} seen in Fig. 1(center), let Tijk

denote the composition (ordered combination) of shown three pair-

wise transformations in a loop, i.e.:

Tijk = Tki(Tjk(Tij(·))) = Tki◦Tjk◦Tij (1)

where {i, j, k}≤n and i 6=j 6=k 6=i . Holden et al. [10] suggested

that when all these three transformations are ideal (i.e., “correct”



Fig. 1. Registration of two images (left), a loop of three registrations

(center), and examples loops in an image set (right).

anatomical correspondences are identified between each pair) then

Tijk should map the image Xi back onto itself. Conversely, de-

viation of Tijk from the identity transform was used to assess and

compare different registration algorithms. Such deviations can also

be computed only at selected target points in Xi, leading to a tar-

get registration error along this loop. Extending on this idea of

registration loops or so-called circuits, one shall also expect that a

segmentation propagated over such a loop should be similar (and in

fact identical) to itself, i.e. Tijk(Si)≃Si . Thus, any deviation from

such similarity, which can be measured by known segmentation

quality metrics such as Dice’s similarity metric (DSM), can be used

as an evaluation criteria for the registration method or its parame-

ters [9, 10]. This criteria is used in this paper as a measure of how

well particular registrations in a loop (or, precisely, the combination

thereof) do perform. Accordingly, let d be the quality metric, such

that for DSM the error in a loop d̃ijk=DSM(Tijk(Si), Si). Then,

our goal is to estimate all pair-wise metrics dij=DSM(Tij(Si, Sj)

using such computed loop metrics d̃ijk. For this, a model describing

how each pair-wise registration error might contribute to an entire

loop error has to be assumed. Datteri and Dawant [13] suggested an

additive error model so that a closed-form least-squares solution is

identified considering multiple loops in a set of images. Assuming

that error accumulates additively along a registration loop:

d̃ijk ≃ dij + djk + dki . (2)

where i ≤ ℓ because DSM can only be computed for loops starting

from atlas images, which have known segmentations.

Using a symmetric registration method as in [13], Tij = T−1
ji

and hence one can assume dij = dji and d̃ijk = d̃ikj . However,

symmetry is not a general condition for typical registration methods

and, therefore, the registrations in both direction and the involved er-

rors therewith may be different. Collocating the linear combinations

(2) from all unique registration loops as in Fig. 1(right) in a system

of equations yields:
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A d = d̃ (4)

where δijk are Kronecker delta row-vectors of length n(n− 1) with

all zeros but three ones as follows:

δijk =

{

δijk[t] = 1 , if t ∈ {i, j, k}
δijk[t] = 0 , otherwise

(5)

Recall that i ∈ [1, ℓ] and {j, k} ∈ [1, n] where i 6= j 6= k 6= i.

Casting (4) as the optimization problem (min‖Ad−d̃‖2), a

least squares solution can be found using pseudo-inverse as:

d =
(

A
T
A

)

−1

A
T
d̃ (6)

A multiplicative error model can be cast as in (2) after variable

substitutions d′=log(d) and d̃
′=log(d̃) as follows:

d̃ijk ≃ dij djk dki (7)

log(d̃ijk) = log(dij) + log(djk) + log(dki) (8)

d̃
′

ijk = d
′

ij + d
′

jk + d
′

ki (9)

and thus solved similarly to (4).

The solution of (6) cannot guarantee any bounds on the esti-

mated values d. However, in (2) d was assumed to have a unit of

DSM. Therefore, d ∈ [0, 1] should be satisfied. In this paper, we

formulate (4) as a constrained optimization problem:

min ‖Ad− d̃‖2 s.t. 0 ≤ d ≤ 1 (10)

This is then solved using the reflective Newton trust-region method,

an iterative optimization method chosen due to its computational and

memory efficiency [14]. This proposed solution technique using the

multiplicative model (7) is called OPT∗ in this paper. The original

analytical solution method of [13] with the additive assumption is

called ALG+.

In a set of n images with given ℓ atlases, consider the goal of

finding the best possible single-atlas segmentations for the rest of

the n− ℓ images (targets). In ALG+, it was proposed to use one sin-

gle target image together with the available atlas images in order to

generate estimates from each atlas to this target. Then, for each tar-

get in [ℓ+1, n] a separate system of (4) with (ℓ+1)ℓ unknowns and

ℓ2(ℓ− 1) equations are to be solved. Having accordingly estimated

dij∀i∈[1,ℓ] ,j∈[ℓ+1,n], one would then choose (retrieve) the best atlas

for each target:

∀j∈[ℓ+1,n] i
∗

j = arg max
i∈[1,ℓ]

dij (11)

where i∗j is the number of optimal atlas choice for target j. In this

paper, we instead propose by OPT∗ to solve for all available targets

within the same equation system concurrently. This yields a system

of n(n − 1) unknown estimations with ℓ(n − 1)(n − 2) known

equations. Having solved all dij estimations concurrently, the best

atlases are picked as in (11).

3. RESULTS AND DISCUSSION

We compared the proposed OPT∗ with the state of the art method

ALG+ on two datasets: 70 midsagittal MR slices of brain with

segmented corpus collasum (CC) and 15 3D head CT scans with

segmented (mandibular) jaw bone (JB). These datasets are, respec-

tively, referred as CC MR and JB CT. All images of each dataset

were first registered to each other using a Markov random field based

deformable registration technique [15], which led to the transforma-

tions Tij that we employed in the methods described above.

Although A in (6) is sparse, (AT
A)−1 is a dense matrix with

O(n4ℓ2) elements. In contrast, the iterative trust-region method in

OPT∗ does not build the Hessian, hence yielding a small memory

footprint. In Fig. 2(a), peak memory requirements for both meth-

ods are plotted when processing datasets of n images (with ℓ=n−1



(a) Peak memory [MB]

(b) ALG+ runtime [s]

(c) OPT∗ runtime [s]

Fig. 2. Comparisons of (a) peak memory requirements, and

(b-c) computation time.

atlases). ALG+ requirement is seen to increase exponentially. We

fitted polynomials to experimental points in the figure to indicate this

trend. Indeed, with n>45 images our setup cannot perform ALG+

anymore, whereas all our images can be processed concurrently us-

ing OPT∗. For the CC MR dataset of n=70, the polynomial fit esti-

mates that ALG+ would require 10 GB of memory, whereas OPT∗

in practice necessitated a mere 11 MB.

The large matrix inversion in (6) also affects the algorithmic

speed. Fig. 2(b-c) shows the time required by each method for dif-

ferent numbers of atlas (ℓ) and target (n−ℓ) combinations. For each

combination, an average from 20 experiments using randomized

atlas-target selections from the CC MR datasets was plotted. Due to

memory limitation, ALG+ was only computed for n≤40. For n=40
it already takes nearly 15 min, whereas for all n≤70 images OPT∗

performs under 12 s on average. The worst case OPT∗ runtime was

not more than 18 s for any experiment.

For comparing accuracy similarly to [13], we have observed the

correlation of the estimated atlas-to-target dij values to their ideal

DSM d̃ij , which are computed from the registrations using their

ground-truth segmentations. We use two metrics: Pearson’s product-

moment correlation coefficient r(dij , d̃ij), which seeks for an un-

derlying linear relation between the values; and Spearman’s rank

correlation coefficient ρ(dij , d̃ij) which quantifies the rank (order-

ing) relation between those [16]. 20 randomized experiments for

each different atlas-target numbers (with n≤40) was conducted on

each dataset. Fig. 3 shows the improvement in both linear and rank

relationship from using our proposed method. The correlation dif-

ference images show that in no case OPT∗ performs worse r than

ALG+. The average values of such correlations per method is given

in Table 1. For comparisons, we also included the methods ALG∗ for

algebraic solution (6) with multiplicative assumption (7) and OPT+

for constrained trust-region method (10) with additive assumption

(2). The proposed OPT∗ outperforms all other three combinations.

Although for Fig. 3 we performed ALG+ for more than one tar-

gets as well, the original method in fact proposes its use in only

single target case (the left-most column of the correlation images).

Nevertheless, we noted that for the same atlas number, in particular

for small number of atlases, the correlation indeed increases as the

target number is increased (observe a single row of the correlation

images). We hypothesize that this is due to the leverage of registra-

tion information between target images in the system solution (4).

Note that in the original ALG+ method, no inter-target registrations
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Fig. 4. For selecting an atlas with each method, average DSM (top)

and rank (middle) errors per number of targets, and DSM error (bot-

tom) per number of atlases. For JB CT, the extent of errors for all

experiments are also shown.

are employed, whereas our proposed method includes those. To test

this hypothesis, we measured the success of our image retrieval task

in (11). For each target j of each randomized experiment, we com-

pared the best theoretically achievable DSM maxi∈[1,ℓ] d̃ij to the

DSM achieved in practice by selecting the atlas i∗j with the best es-

timation using (11), i.e. d̃i∗
j
j . We accordingly define an error:

σj
def
=−d̃i∗

j
j +maxi∈[1,ℓ] d̃ij , (12)

which is zero for predicting the correct atlas. Fig. 4(top) shows the

error from randomized experiments averaged over different number

of atlases. We also computed a rank error p ∈ [1, ℓ] as the rank

of each retrieval i∗j within the atlases sorted by d̃ij . This rank is

normalized to a percentage, i.e. by p−1
ℓ−1

, for each experiment and it

is shown as averaged in Fig. 4(middle).

When atlas supervision is weak using few atlases, inter-target

registrations can provide valuable additional information. Error σ is

shown in Fig. 4(bottom) for using different small numbers of atlases.

The improvement with our method is seen, in particular for using

three atlases with JB CT images where the error is more than halved.

A in (4) is not necessarily full-rank, when nonsymmetric reg-

istrations, which are more readily available, are used. As both the

algebraic and the iterative methods seek for a minimum-norm solu-

tion, a unique minimizer is found nonetheless. Such solutions are
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Fig. 3. Pearson’s linear and Spearman’s rank correlation coefficients are shown using ALG+ and OPT∗ methods on both datasets. The

improvement from using the proposed method is highlighted by showing the difference between them.

Table 1. Average correlation values for each method.

ALG+ ALG∗ OPT+ OPT∗

LJ CT
Pearson’s [r] 0.889 0.861 0.880 0.930

Spearman’s [ρ] 0.739 0.704 0.703 0.769

CC MR
Pearson’s [r] 0.880 0.872 0.865 0.901

Spearman’s [ρ] 0.538 0.521 0.521 0.564

seen to perform well, as demonstrated in both the correlation and

atlas-selection results; with our method outperforming the others.

The reason for the observed DSM improvements being relatively

small is that all original DSMs from our MRF-based registration is

relatively high, e.g. ≥90% of DSM are larger than 0.9 for CC MR.

Then, even retrieving a wrong atlas can give a large DSM.

4. CONCLUSIONS

We present an improved technique for registration estimation, en-

abling rapid computation in large image datasets. We show in two

different datasets that information from registrations between target

images can indeed be leveraged to improve such estimation accu-

racy. The achieved fidelity estimation improvement in single-atlas

selection is expected to translate similarly to multi-atlas fusion.
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