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Abstract—In medical simulations involving tissue deformation,
the finite element method (FEM) is a widely used technique,
where the size, shape, and placement of the elements in a model
are important factors that affect the interpolation and numerical
errors of a solution. Conventional model generation schemes for
FEM consist of a segmentation step delineating the anatomy
followed by a meshing step generating elements conforming to
this segmentation. In this paper, a single-step model generation
technique is proposed based on optimization. Starting from an
initial mesh covering the domain of interest, the mesh nodes
are adjusted to minimize an objective function which penalizes
intra-element intensity variations and poor element geometry for
the entire mesh. Trade-offs between mesh geometry quality and
intra-element variance are achieved by adjusting the relative
weights of the geometric and intensity variation components
of the cost function. This meshing approach enables a more
accurate rendering of shapes with fewer elements and provides
more accurate models for deformation simulation, especially
when the image intensities represent a mechanical feature of
the tissue such as the elastic modulus. The use of the proposed
mesh optimization is demonstrated in 2D and 3D on synthetic
phantoms, MR images of the brain, and CT images of the kidney.
A comparison with previous meshing techniques that do not
account for image intensity is also provided demonstrating the
benefits of our approach.

Index Terms—Mesh generation, mesh optimization, biomedical
image segmentation, deformable patient models.

I. INTRODUCTION

THE finite element method (FEM) is a common technique
in medical simulations. Its speed and accuracy depend

on the number of nodes/elements used and their shape and
placement in the domain. In this paper, a variational modeling
approach is presented to produce high-quality FEM meshes
automatically for given tissue domains in both 2D and 3D.
The method aligns FEM elements to group similar image
intensities, as a way of clustering (segmenting) the domain,
while maintaining good element quality for FEM. The use
of such a method becomes particularly important when the
input image represents a mechanical feature distribution of the
tissue such as elastic modulus. This is because the elasticity
parameters of each element is represented with a single value
in FEM and the proposed method minimizes an objective
function defined by the error between this single-value dis-
cretization and the measured modulus distribution within each
element. Nevertheless, as presented in this paper, the method is
applicable to the meshing of most medical imaging modalities
without the need for an intermediate segmentation.
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In the conventional modeling methods for the FEM simu-
lation of tissue deformation, a discrete representation of the
anatomy of interest is obtained from an intensity image by
employing two steps, segmentation and meshing. Segmenta-
tion, which consists of recognition and delineation of anatomy,
has been studied in several medical contexts using numerous
different approaches [1]. Although automatic segmentation
techniques do exist, recognition is not a computationally well-
defined problem and thus is usually achieved with manual
intervention, leading to semi-automatic implementations. In
contrast, delineation, which in many cases can be stated
roughly as grouping similar pixels, allows for algorithmic
approaches. Segmentation overall often requires a priori in-
formation about both the anatomy and the medical imaging
modality, therefore does not have a one-size-fits-all solution.

The result of segmentation is a representation of the organ
boundary, which is often in an explicit form such as a surface
mesh, although implicit representations are also viable. This
anatomical boundary is then supplied to a meshing scheme
to tile the space with elements. The final mesh is then
used for simulating tissue deformation for procedures such as
laparoscopic surgery [2], brain surgery [3], breast biopsy [4],
and brachytherapy [5]. In most scenarios, the time to complete
a simulation is limited. For instance, simulation rates of hun-
dreds of Hertz are required for haptic displays. This imposes
a stringent node budget on the deformable model.

It is possible to generate anatomical models using structured
meshes such as converting image voxels into hexahedral
elements [4]. However, unstructured meshing is a common
choice since the same or better surface/volume representations
can be achieved using fewer elements [6], [7]. Popular un-
structured meshing techniques include octree-based methods,
Delaunay approaches, and advancing fronts, most of which
were originally developed and tuned for the modeling of
mechanical structures. The meshing efforts for medical appli-
cations have often focused on generating meshes inside given
segmentation contours [8] or 3D surface triangulations [3],
[9]–[11]. Common approaches first tile the bounding box
of the anatomy with elements, and then cull the elements
outside the anatomy, followed by a final stage of clipping [3],
[8], [9] or compressing [10], [11] the elements that cut the
anatomical boundaries. Graded meshes with smaller elements
closer to the surfaces were employed in applications where the
surface mesh resolution is the primary concern [9], [11], [12].
Typical implementations of meshing techniques from different
conceptual categories are compared by Fedorov et al. [13] in
the context of deformable registration of brain MR images.

Image segmentation is a special case of the general data
clustering techniques [14], where not only similarity of in-
tensities but also spatial distribution such as connectivity of
voxels (so that they form a single object) is often desired. Such
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additional constraints are enforced by the inherent functioning
of the particular segmentation method such as watershed and
active contours [15] and define the overall performance of that
method. Indeed, segmentation as part of a meshing process
can be seen as an even more-specific clustering problem,
where the clustered regions must have concrete geometrical
shapes such as tetrahedra. Gevers [16] introduces a 2D method
for segmenting photographic images using triangle splitting
and merging based on intensity distributions in elements. A
similar technique is presented in [17] for tetrahedra. However,
these methods aiming computer graphics applications do not
generate meshes suitable for FEM. A recent method by Reid et
al. [18] also considers shape quality measures for segmenting
micro-structures in 2D medical images. Such methods involve
several local mesh operations (e.g. annealing, smoothing,
fixing in [18]) and their extension to 3D is not trivial. In
contrast, our proposed penalty-based mesh evolution scheme to
minimal image partitioning problem has multiple advantages.

Unstructured anatomical meshing in several medical sim-
ulation applications have been carried out using algorithms
that were originally developed for mechanical structures, such
as TetGen [19] and GHS3D [20]. These methods require the
anatomy to be segmented as a piece-wise linear complex,
such as a surface mesh. More recent techniques that target
meshing of medical images use a voxel-based segmentation
of the domain, often called a labeled image, where each
voxel is marked to be inside or outside of a given anatomical
structure [8], [21]–[23]. In contrast, the variational image
meshing (VIM) method introduced in this paper uses original
medical images without requiring any preceding segmentation.

Most segmentation methods require some sort of manual
intervention, not only demanding the scarcely available time
of health professionals but also preventing an automated
modeling for FEM. Furthermore, there are certain drawbacks
with modeling approaches consisting of two separate steps
of segmentation and meshing, since these two processes run
successively with different goals. In such a two-step approach,
meshing strictly follows the surfaces given by segmentation.
But the segmentation may be unreliable, or may simply not
delineate every visible structure in the image. For instance,
in the case in which anatomy regions are not distinguishable
in the original image, an arbitrary surface is still generated
by the segmentation algorithm. This constrains the mesh to
an arbitrary boundary, which also may not be FEM-friendly,
especially if the meshing method leaves the initial surface
triangulation unchanged, e.g. [19]. Also, structures that have
not been segmented because they are not the focus of a
particular segmentation algorithm, still affect the overall tissue
deformation. Including such structures in the model at little or
no cost using an image-aware meshing approach is clearly
beneficial. As suggested in this paper, if the segmentation
is postponed by integrating its objective into the meshing
process, then element/node placement choices during model
generation can be made by considering the goals of both
processes, allowing a trade-off between them.

As a motivating example, consider the problem of sim-
ulating needle insertions into the prostate using deformable
models [5], possibly produced using elastography [24]. For

a fast simulation, only a limited number of nodes can be
accommodated, and for accurate FEM, certain mesh geometric
quality has to be met. Furthermore, a model of the prostate
region should follow anatomical boundaries, where visible.
Although the prostate is not distinguishable in ultrasound im-
ages from the peri-prostatic tissue at the base and apex, which
complicates its segmentation, a finite element model based
on a naturally registered elastography image can simulate the
prostate region deformation even without necessarily knowing
where the prostate boundary is. To the best of our knowledge,
no previously published meshing approach addresses this
issue, for which our proposed method VIM offers a solution.

II. PREVIOUS WORK ON OPTIMAL TESSELLATIONS

During finite element modeling of deformation, the two
main sources of error are interpolation errors of the approx-
imation to the function and its gradient (which is strain for
deformation), and numerical errors during the solution of
the approximation. Numerical errors depend mainly on the
conditioning of the finite element matrices involved and also
on the numerical precision and type/order of mathematical
operations applied in obtaining the solution. Interpolation
errors are affected by various characteristics of the mesh and
the approximant function, such as the polynomial order of the
function approximation. Among these error contributors are
the shape and size of mesh elements [25]. Consequently, it
has been an active field of research to obtain meshes that will
introduce minimal amount of such errors in FEM simulations.

Given a set of vertices, their Delaunay tessellation of-
fers several favorable features compared to other possible
tessellations. In particular, when a function f has bounded
second derivatives, Delaunay tessellation minimizes the worst
interpolation error between f and its piecewise linear approxi-
mant defined by this tessellation (mesh). Delaunay tessellation
received significant attention in the mesh generation literature.
The major problem with Delaunay refinement approaches to
mesh generation in 3D has been the existence of slivers in
the final meshes. Slivers are a class of degenerate tetrahedra
that are not necessarily removed by the Delaunay refinement.
The degeneracy of such tetrahedra is not correctly captured
by many commonly-used mesh quality measures such as the
edge-radius ratio, which is the ratio between the shortest edge
length and the circumsphere radius. Edge ratios, area-volume
ratios, and minimum/maximum dihedral angles are among
various other quality measures suggested in the literature.
Reviews of these measures with their relation to function
approximation and FEM were given by Shewchuk [25] and
Field [26].

To achieve better-shaped elements, modifications to Delau-
nay refinement and other local optimization schemes were
proposed in the literature [27]–[29]. However, these methods
require significant implementation effort and result in non-
convex functionals that are difficult to analyze and derive
theoretical guarantees for. More recent approaches to mesh
smoothing such as the Centroidal Voronoi-Delaunay Tessel-
lation (CVDT) [30] and Optimal Delaunay Triangulations
(ODT) [31], [32] consider minimizing a quadratic energy
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through updates of vertex positions and their connectivity.
Advantages of these methods are (i) the simplicity of each
update and (ii) the implication of eventual convergence due
to the monotonically-decreasing energy definitions. Building
on these and other previous work, Alliez et al. introduces
a 3D mesh generation technique producing superior meshes
compared to similar methods in the literature [33]. This
method is adapted in this work.

For anisotropic meshing, Chen [32] notes that ODT equidis-
tributes the edge lengths of a mesh under a metric related
to the Hessian of the approximated function f(x). Alliez et
al. adjust the edge length distribution in space using a mesh
density function, e.g. to have finer elements modeling higher
curvature boundary surfaces of a 3D object [33]. However, it
is not clear from these and other work, how the information
about a feature distribution through the tissue (e.g. distribution
of elastic modulus) can be incorporated into such variational
meshing techniques, assuming this distribution is known in the
continuum a priori. Our proposed technique VIM addresses
this aspect of meshing.

The methods for image-compliant meshing are introduced in
Section III and a numerical approach for their use is presented
in Section IV. The results from various imaging modalities
and comparisons with other selected meshing techniques are
demonstrated in Section V, which is followed by discussion
and conclusions in sections VI and VII, respectively.

III. METHODS

The method involves combining an element geometric
quality metric with an image-based metric into an objective
function to be minimized. First, the use of the former metric
alone is described. Next, an optimal parameter discretization
of the elements of a tessellation is presented. Based on this,
an image-based measure is defined for an optimal image
partitioning and, finally, its combination with the geometric
definition above is introduced.

A. Geometric Energy for Mesh Optimization
Let gT (x) be a piece-wise linear approximation of a func-

tion f(x) on a given tessellation T . It is known that the
integral approximation error EG = ‖gT − f‖L1 is minimized
by the Delaunay tessellation of the domain M ⊂ RN

when (i) the function f is a paraboloid, i.e. f(x) = ‖x‖2,
and (ii) gT is its overlaid circumscribing piece-wise linear
approximant [31]. This was used in iterative optimization
schemes in the literature to obtain geometrically high-quality
meshes [32], [33] and is also adopted as the geometrical mesh
quality measure in our method in the form given below:

EG =
∑

τ∈T

∫

τ

gτ (x) dx−
∫

M
f(x) dx (1)

=
1

N + 1

∑

i

f(xi)|Ωi| −
∫

M
f(x) dx (2)

=
1

N + 1

∑

i

x2
i |Ωi| −

∫

M
x2 dx (3)

where Ωi is the 1-ring neighbourhood of node xi, that is the
set of elements having xi as a corner as in Fig. 1(a). This

(a) (b) (c)

Fig. 1. (a) 1-ring neighbourhood of a node, (b) a random 3D mesh
initialization, and (c) its geometrically optimized configuration.

neighbourhood will be referred as 1-ring throughout this paper.

An example of optimizing this geometric energy EG alone
is shown in Fig. 1, where the 3D mesh was initialized us-
ing a random distribution of vertices as in Fig. 1(b). This
optimization involves Lloyd’s relaxation, which is performed
as alternate updates: a global Delaunay tessellation of given
node locations xi and node relocations so that the above-given
cost function is minimized. Figure 1(c) shows the optimized
meshes after having converged.

B. Element Discretization

In this section, a penalty-function for image discretization is
defined based on a mesh element and the image pixels/voxels
covered by that element. Since an element uses a discretized
value to represent any spatial location within itself, an L2-
norm difference of the discretized element value and the voxels
represented by that value is used as the discretization error
metric. This definition is in a way similar to the common
Mumford-Shah functional used in various image segmentation
methods to partition pixels based on their similarity [34].
However, in contrast to such methods, where often there is
a term constraining the length/curvature of segmenting curve
for regularization purpose, the planar faces of mesh elements
in our method already constrains the way that image pixels
can be partitioned in space.

Let h(x) denote the distribution of a feature in M, the
domain of interest. In the FEM, such a feature is discretized
on a mesh so that each mesh element τj has a single assigned
value, h̃j , modeling this feature within that element. In this
paper, the discretization error associated with this single value
approximation h̃j and the values it represents, {h(x),x ∈ τj},
is defined as an L2-norm:

Ej
D =

∫

τj

∣∣∣h(x)− h̃j

∣∣∣
2

dx . (4)

It is evident that for a constant h within an element,
the best h̃j is that constant value itself. In general, this
error is minimized for h̃j being the average mean value of
the given distribution. Therefore, for a given element and
given (background) feature distribution, a discretized feature
value h̃j is assigned to that element τ j as the average of
{h(x),x ∈ τj}. This average mean discretization is further
discussed in the context of elastic strain energy formulation
for FEM in Section VI-C.
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113 nodes − 196 elements

(a) (b)

Fig. 2. An initial synthetic phantom (a) with its discretization (b).

C. Objective Function for Image Compliance

Assigning a single-value equivalent of a known feature
distribution (an image) within an element as the average mean
value is demonstrated in Fig. 2 for a structured mesh overlaid
on a synthetic phantom. The element shading in Fig. 2(b)
denotes the average intensity of the underlying image pixels.

The element discretization error defined in (4) is integrated
over the mesh to yield the following cost function describing
the fitness of a mesh to an image:

ED =
∑

j

∫

τj

∣∣∣h(x)− h̃j

∣∣∣
2

dx . (5)

Note that with the earlier assumption of h̃j being the
average mean value in the element, (5) can be rewritten as:

ED =
∑

j

vj var (h(x) : x ∈ τj) (6)

where vj is the volume of element j and var is the second-
moment of a distribution around its mean, namely the vari-
ance. Thus, this definition penalizes elements with larger
image intensity variations. However, it does not enforce suit-
ability of element size and shape for the FEM. As a result,
in order to derive a variational scheme trading off between
element geometry and image representation, the two error
metrics EG and ED above are combined as follows:

E = (1− λ)EG + λED (7)

where λ ∈ [0, 1) is the weighting factor of discretization.
A visualization of this combined error is presented in

Fig. 3 for a simple 2D mesh, overlaid on an image with a
diamond-shaped feature as in Fig. 3(a). For the purpose of this
illustration, the triangulation and the four corner node position
are kept fixed. As the position of the center node is changed,
(7) is calculated for this mesh using (3) and (6). The combined
cost E is seen in Figs. 3(b)–(e) as a function of the center node
position for different weighting factors λ. Note that with the
two competing measures in this example: (i) the best triangle
aspect ratios are achieved by minimizing EG when the mid-
node is placed at the center, and (ii) the variance of some
triangles reduce to zero minimizing ED when the mid-node
is placed at the corners of the diamond shape. Consequently,
for small λ values, E is minimized at the center disregarding
the underlying image, whereas the shape corners are captured

113 nodes − 196 elements : λ = 0.05 113 nodes − 196 elements : λ = 0.30

(a) (b)

Fig. 4. The initial phantom mesh in Fig. 2 optimized using (a) λ = 0.05
and (b) λ = 0.30 are shown as meshes overlaid on the image (top) and the
corresponding image approximations (bottom).

better by the node as λ increases. The preliminary results of
this variational approach were presented in [35].

IV. IMPLEMENTATION

The objective E is a function of node location x and mesh
connectivity (tessellation) T . In this paper, this cost function
is minimized in a numerical optimization scheme, where node
locations and element connectivity are updated alternately
minimizing the cost based on Lloyd’s relaxation. Figure 4
demonstrates two example mesh models generated for the 2D
synthetic phantom in Fig. 2 after optimization using VIM with
two different weighting constants λ.

A. Mesh Initialization
Our optimization procedure is initialized by a geometrically

optimal mesh, which can be found by minimizing EG alone
starting from, for instance, a random distribution of nodes.
Alternatively, a regular mesh structure, which is naturally
a minimizer for EG, can be used for initialization. In this
paper, this latter approach is followed by using regular-grid
tessellations as the initial meshes for VIM.

B. Node and Connectivity Updates
Formally, the optimal location of a node xi minimizing E

can be found using a constrained optimization approach, where
the 1-ring polygonal/polyhedral region Ωi seen in Fig. 1(a) is
the feasible domain. The perimeter of Ωi (the outer edges/faces
of neighbouring triangles/tetrahedra) can thus be defined as a
set of inequality constraints Aixi < bi where an optimal node
location is sought as:

x′
i = argmin

xi∈Ωi

E(xi)

= argmin
xi

E(xi) s.t. Aixi < bi . (8)
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5 nodes − 4 elements

(a)

λ = 0.2

(b)

λ = 0.4

(c)

λ = 0.6

(d)

λ = 0.8

(e)

Fig. 3. A simple four-element mesh (a) and the combined cost E as a function of mid-node position for λ of (b) 20%, (c) 40%, (d) 60%, and (e) 80%.

Due to the lack of a closed-form definition for either the
critical-point or the gradients of E, a numerical optimization
of (8) above within each 1-ring is a costly operation. Fur-
thermore, considering the outer loop of the Lloyd’s relaxation
which also updates the positions of all other nodes including
the 1-ring neighbours of xi, finding an exact optimum location
turns out to be less effective than expected. Consequently, we
follow an approach similar to [36], where an optimal location
is sought in the directions toward 1-ring centroids. Starting
from each centroid, the search step length is reduced using the
golden search method until it becomes small with respect to
the image resolution. Accordingly, xi is moved to the position
that yields the smallest cost E.

For updating the connectivity, the edge/face swapping strat-
egy from GRUMMP project [37] is implemented. This method
considers the alternative local mesh changes where edges/faces
are replaced and reconnected in different configurations for im-
proving a given metric [27]. For our purposes, each edge/face
is swapped if and only if the alternative swapped connectivity
will reduce our objective function.

During both the node and the connectivity updates, in
order to eliminate configurations that cause inverted or very
flat elements (such as slivers in 3D), an additional quality
threshold is enforced on elements. Any configuration that
results in elements worse than this threshold limit is rejected.
In the examples of this paper, a maximum dihedral angle
bound of 150◦ is used for this purpose. This generates sliver-
free high-quality meshes. Minimum dihedral angles, radius
ratios, or other element quality measures can also be bounded.

C. Normalization of Cost Weighting Factor

Our design parameter λ sets the trade-off between geometry
and image compliance. However, its actual effect on the
result depends on many factors such as the domain size,
the number of elements, and the intensity variation of the
given image. Depending on such parameters, EG and ED may
have very different scales separated by orders of magnitude.
Consequently, in order to have control over the range of prac-
tical λ values, an additional step of EG/ED normalization is
employed. In the first iteration where EG is optimum, a scaling
factor between the values of these two error definitions is
calculated so that the given λ will indeed be interpreted as the
percentage error contribution of discretization rather than an
absolute quantity. This scaling factor is then fixed and used for

the rest of the iterations. This treatment normalizes λ allowing
us to report consistent effective values (percentages), which
are easier to associate. For instance, a λ of 30% means that
the optimization process targets minimizing the cost combined
as 30% discretization and 70% geometry components with
respect to their initial error contributions.

D. Convergence Measure

In this paper, a convergence measure for the optimization is
set as the root-mean-square nodal position update at iteration
t normalized by the mesh bounding-box size b as follows:

υ =
1

b

√√√√ 1

n

n∑

i

(
xt+1
i − xt

i

)2
(9)

where n is the number of mesh nodes. A mesh is considered
to have converged when υ < 10−3.

V. RESULTS

A 2D slice from MR image data of the brain is shown
in Fig. 5(a). Figures 5(b)-(e) present image discretizations by
the initial and final meshes for two sample optimizations at
different mesh resolutions. The converged mesh of the latter
case is seen overlaid on the initial image in Fig. 5(f). Similarly,
the image and the discretizations from two optimizations for
a 2D CT slice of the kidney are presented in Fig. 6. Note
that, once a mesh is optimized using VIM, a superior image
representation is achieved even using a relatively coarse mesh.
Furthermore, not only the kidney itself but also the tumor in it
and the vertebra on the right are followed by the mesh, without
requiring a separate segmentation for each.

VIM is next demonstrated in 3D. The optimized mesh of a
synthetic phantom with a spherical inclusion is seen in Fig. 7.
For the presentation of 3D results, along with cutaway views
of meshes, segmentations of corresponding anatomy of interest
using a simple operation of element thresholding are also
presented. This thresholding method is detailed in Sec. VI-B.

Slices from a 3D MR image volume of brain ventricles are
seen in Fig. 8(a). The optimized mesh is shown in figures
8(b)-(d) with cutaway and thresholded views of ventricles,
where the shading of each element face indicates the dis-
cretized h̃j value within that element.

The evolution of the combined cost values E during the
optimization of some of the examples presented in this paper
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(a) (b) (c) (d) (e) (f)

Fig. 5. Mesh optimization on a 2D MR image slice (a) of brain ventricles. Initial (b) and optimized (c) discretizations with 59 nodes; initial (d) and
optimized (e) discretizations with 111 nodes. The finer optimized mesh is seen as overlaid on image (f).

(a) (b) (c) (d) (e)

Fig. 6. Mesh optimization on a 2D CT image slice (a) of the kidney. Initial (b) and optimized (c) discretizations with 61 nodes; and initial (d) and optimized (e)
discretizations with 338 nodes.

(a) (b) (c) (d)

Fig. 8. Mesh optimization for 3D MR image volume of the brain. (a) shows part of a mesh with some image slices from the voxel volume. A 858 node
mesh converged after 9 iterations is presented with (b)-(c) two cutaway views showing discretized element values on faces and (d) the thresholded elements
showing the ventricles.

are plotted in Fig. 9. These were normalized to their initial
mesh quantities in order to present their change in percentage.

In order to evaluate element quality and volume approx-
imation performance, the meshes generated by VIM were
compared with three popular meshing software: GHS3D [20],
TetGen [19], and CGAL [23]. GHS3D is a tetrahedral mesh-
ing engine used in several commercial engineering packages.
We used its implementation in AnsysTM . TetGen generates
constrained Delaunay tessellations, the input of which is a
piece-wise linear complex (e.g., a surface mesh) delineating
the boundaries of different regions to be meshed. In the
Computer Graphics Algorithms (CGAL) package, the labeled
voxel-volume meshing technique based on [22] is used.

A sphere of radius 1 embedded at the center of a 3×3×3
cube was used as the synthetic test domain. Each software

above requires the domain geometry to be input in a dif-
ferent format due to the different nature of their individual
algorithms. For Ansys, the geometry was defined implicitly in
analytical form and a tetrahedral mesh was generated. As the
input to TetGen, the sphere and cube surface meshes extracted
from the Ansys tetrahedral mesh results were used. For CGAL
and VIM, a 1003 voxel 3D image of the cube was generated
with the sphere having a different color (label).

Three different mesh sizes, 1, 0.5, and 0.2, were used for
comparison as seen in Fig. 10. However, each method has a
different interpretation of this desired mesh size. For instance,
in Ansys, this value defines the initial subdivision length of
lines (e.g., cube edges), whereas in TetGen it is the target
element edge length that is used to terminate the subdivision.
As a result, these methods resulted in somewhat different
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(a) (b)

Fig. 7. The optimized 3D mesh of a synthetic phantom image with a
spherical inclusion. In the cutaway view in (a), element shading represents
the discretized values of cut elements. The inclusion extracted using element
thresholding is presented in (b).
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brain MRI 2D: 59 nodes
brain MRI 2D: 111 nodes
brain MRI 3D: 858 nodes
kidney CT 2D: 61 nodes
kidney CT 2D: 338 nodes

Fig. 9. Combined cost E during the optimization of some examples in this
paper.

number of nodes/elements. In order to initialize VIM, regular
node grids of sizes comparable to the meshes generated by the
three other methods were chosen.

CGAL requires a parameter to control the maximum dis-
tance of generated surfaces to input geometry boundaries,
which was empirically set to its best value 0.1 . A low setting
floods the mesh with many elements, whereas for higher values
the geometry is not respected and/or inconsistent meshes
are generated. The effect of this parameter on following the
boundaries is seen on the outer surfaces of the cubes in
Fig. 10(c). Other quality-related parameters of TetGen and
CGAL were set to their best possible theoretical limits.

In Table I, a qualitative mesh comparison is presented. Mesh
element quality is reported using the worst normalized radius-
ratio (NRR), and minimum and maximum dihedral angles
(DA) in meshes. NRR is the inradius-to-circumradius ratio
normalized by the space dimension to a scale of (0, 1]. DA is
the angle in degrees between the two faces of a tetrahedron
ranging between (0◦, 180◦). The worst values of these metrics
define a lower bound for the accuracy of FEM using that
mesh [25], where larger NRR, larger min{DA}, and smaller
max{DA} indicate better meshes for numerical simulations.

As a surface approximation measure, three other metrics
are also reported, quantifying how well the given sphere
geometry is reproduced by each mesh. These metrics are the
numbers of voxels that are categorized erroneously for being

(a) Ansys

(b) TetGen

(c) CGAL

(d) VIM

Fig. 10. Meshing of a sphere-embedded 3x3x3 cubic domain using Ansys,
TetGen, CGAL, and our proposed VIM method. Three mesh resolutions, 1,
0.5, and 0.2, are presented in the left, center, and right columns, respectively.

inside/outside the sphere, namely: false negative (FN) voxels
lie outside the spherical mesh despite being inside the actual
(analytical) sphere, false positive (FP) voxels lie inside the
spherical mesh but outside the actual sphere, and TF stands
for the total number of such false-categorized voxels. TF is
also given in percentage normalized to the number of voxels
(≈volume) within the sphere. For extracting the sphere from
VIM-generated meshes, the thresholding method described in
Section VI-B is used.

VI. DISCUSSION

A. Comparison with Selected Methods

The first three meshing techniques in Table I, despite
using different algorithms, all aim at placing mesh nodes
at interfaces of given domain boundaries. Therefore, for the
given convex spherical region, these techniques generate un-
derlaid approximations with a large number of FN voxels (and
with FP≈0). Note that the volume of the sphere is under-
approximated by these meshes. In contrast, using element vari-
ances, VIM aligns the faces of the elements to cut the spherical
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TABLE I
MESH QUALITY AND SURFACE APPROXIMATION COMPARISON FOR THE MESHES IN FIGURE 10

Mesh Size Quality Metrics Approximation Metrics
Method #vertices #elements min{NRR} min{DA} max{DA} FN FP TF

100 310 0.47682 27.9440 134.702 41390 0 41390 (26.70%)Ansys
452 1828 0.43801 20.8189 141.445 12026 0 12026 ( 7.76%)

(GHS3D) 4636 23256 0.31221 16.2556 151.801 2684 0 2684 ( 1.73%)

107 340 0.20114 9.7820 163.681 41390 0 41390 (26.70%)
TetGen 461 1925 0.14289 9.0751 164.751 12026 0 12026 ( 7.76%)

4746 24712 0.15244 7.2965 164.848 2684 0 2684 ( 1.73%)

263 813 0.19305 10.7146 162.705 18440 0 18440 (11.89%)
CGAL 489 1977 0.14145 10.0799 165.105 13757 10 13767 ( 8.88%)

2910 14507 0.05755 2.9525 175.366 3565 46 3611 ( 2.33%)

125 387 0.40437 19.4780 146.035 2921 5643 8564 ( 5.52%)
VIM 343 1334 0.14745 11.8827 149.986 1279 2818 4097 ( 2.64%)

4096 20790 0.20894 10.6295 149.986 520 684 1204 ( 0.78%)

boundary optimally, therefore, leading to less than half the
total false-categorized voxels at each resolution compared to
the other methods.

In terms of element quality, VIM is seen to surpass TetGen
and CGAL and approach the Ansys results. Recall that Ansys
has access to the actual analytical representation of the do-
main, giving it a distinct advantage and flexibility in node
placement. In fact, in contrast to the three other methods
that mesh already segmented images, only VIM is capable
of meshing given intensity images with arbitrary values. This
synthetic example here was chosen such that compatible input
representations exist for all four methods compared.

B. Element Thresholding for Segmentation

At any optimization iteration, once the average mean h̃
of the image voxels within every element are found, the
elements below/above a given threshold can be culled from
the visualization. Subsequently, the remaining elements are
grouped into bins (objects of interest), so that any element can
be reached from any other element in the same object by only
traversing through neighbouring element faces. Partitioning a
discretized mesh into sets of such connected regions presents
a way of segmenting this mesh. The largest such connected set
is presented in Figs. 7 and 8 as the mesh representation of the
anatomy of interest using our method. Note that extracting
a surface from these volumetric meshes is not the focus of
this paper and more sophisticated methods can indeed be
developed for this. The thresholded mesh figures in this paper
are mainly presented for visualization purposes.

Recall that our method balances two metrics in the volume,
and does not focus only on the image compliance of the sur-
face. Therefore it is not fair to compare such surfaces extracted
from meshes with other surface segmentation methods such as
active contours. Nevertheless, it is valuable to show that, once
an image is meshed, if a (rough) surface/anatomy segmentation
is also needed, the presented thresholding method can be
used to extract the anatomical structures. Furthermore, instead
of this simple thresholding, other sophisticated segmentation
techniques from the literature can also be applied on these
meshes. Since these generated meshes are (optimal) represen-
tations of images at a lower-resolution than their original voxel
volumes, mesh segmentation approaches should run faster than

the conventional voxel-based segmentations. Moreover, note in
the images that the optimal discretization of voxels into mesh
elements introduces a smoothing effect, while preserving the
edges but removing the noise, which is beneficial for further
processing.

C. Discretization of Known Elastic Modulus Distribution

In this section, the element discretization as the average
mean in Section III-B is shown to be consistent with defor-
mation modeling using FEM. Therefore, using the proposed
discretization cost function indeed results in optimal FEM
meshes minimizing the error due to parameter discretization.

For a linear stress-strain relationship, the elastic strain
energy of a 4-node tetrahedral element can be written in terms
of the four corner displacements uj as:

Ej
strain(u

j) =
1

2

∫

τj

ujTBjTC(x)Bjujdx (10)

where C(x) is the element material stiffness matrix and Bj is
the constant partial-derivative matrix, which is derived using
the integration of barycentric coordinates within the element
and hence is fixed for given tetrahedron corner positions [38].

In the conventional derivation of element strain energy, the
material stiffness matrix is constant within each element, i.e.
C(x) = Cj , since the material properties, Young’s modulus
and Poisson’s ratio, are discretized as constants in each ele-
ment. Then, (10) leads to:

Ej
strain(u

j) =
1

2
ujTBjTCjB

juj

∫

τj

dx (11)

=
1

2
ujTBjTCjB

jujvj . (12)

C can indeed be written as a linear function of Young’s
modulus, i.e. Cj = Ẽj C′

j , where Ẽj is the Young’s modulus
discretization in this element. Consequently, (12) yields:

Ej
strain(u

j) =
1

2
ujTBjTC′

jB
juj Ẽjvj . (13)

It is a common assumption to take the Poisson’s ratio
constant in a soft tissue domain. This is acceptable consid-
ering the nearly incompressible characteristic of soft tissues.
However, the Young’s modulus does often change substantially
between different tissue structures. Assume that this Young’s
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modulus distribution, E(x), within the domain M is known a
priori. There exist several methods in the literature for the
acquisition and derivation of tissue elasticity, see [39] for
a review. Consequently, the material stiffness matrix in the
element can be formulated as C(x) = E(x)C′

j . Substituting
this in (10) yields:

Ej
strain(u

j) =
1

2
ujTBjTC′

jB
juj

∫

τj

E(x)dx . (14)

For the discretization within each element to be optimal, these
two energy formulations in (13) and (14) should be equal,
leading to:

Ẽjvj =

∫

τj

E(x)dx (15)

which is satisfied when Ẽj is the mean of the distribution
within element τ j .

To demonstrate mesh optimization from mechanical tissue
features, the method was applied to prostate elastography
images acquired using the vibro-elastography technique of
Salcudean et al. [24]. Elastography is the technique in which
tracked localized displacements in response to a mechanical
excitation allow for the identification of mechanical tissue
properties [39], [40]. For the purpose of this paper, a 2D
sagittal transfer function image of the prostate is meshed. The
prostate, which is typically stiffer that its surrounding, is seen
in Fig. 11. The optimized meshes and their corresponding
discretizations are also shown in this figure.

D. Connectivity and Node Updates

For the case where the objective function is purely geo-
metric, i.e. λ = 0, EG has a simple algebraic (quadratic)
definition as in (3). This can also be observed for relatively
small values of λ as in Fig. 3(b). For EG alone, a geometrical
closed-form expression of its critical-point within each 1-
ring exists to be used for node updates [33]. Furthermore,
a Delaunay tessellation is guaranteed to minimize this cost
component. However, our objective function E is also a
function of the image and thus is not algebraically defined
in a simple form preventing us from using such closed-form
node or connectivity updates. Instead, we resort to a numerical
optimization scheme for minimizing this objective function.

For the optimization of the objective function E, node
update directions toward the centroids of the 1-ring neighbours
are considered. Using multiple step-lengths in these directions
provide sufficient sampling within the feasible 1-ring region.
Alternatively, a random walk in 1-ring also proved to be
effective for finding alternative node locations minimizing E.
We have attempted other popular optimization methods using
numerical gradients as well. However, they have not performed
as well as the approaches above due to the image-dependent
non-convex nature of E. Furthermore, a fixed number of
sample points assures a predictable processing time for each
node update.

The cost component EG can be rapidly computed alge-
braically using (3), where the second term (volume integral)
has a closed-form definition for the rectangular/quadrilateral
shaped image domains in this paper. The component ED

(a) (b)

Fig. 11. Meshing of a transversal (a) and a para-sagittal (b) slice from
prostate vibro-elastography. The prostate is the darker oval structure in the
center.

is found using numerical integration over the voxels, during
which the enclosure of voxels by elements is determined using
the barycentric coordinates of voxels within the bounding box
of this element. This process of voxel mapping to their enclos-
ing elements is the computational bottle-neck in the current
VIM implementation. This operation can be accelerated using
fast grid-point location approaches such as [41], [42].

The execution time of connectivity updates scales linearly
with the number of voxels in the volume and the mesh
size (number of faces/edges, in particular). This is seen in
Fig. 12(a), where the connectivity update time per one iteration
is plotted for three different mesh sizes at 603, 803, and 1003

voxel images of the same spherical inclusion domain. Node
update time is also affected by the minimum step size consid-
ered toward the neighbour centroids and is given accordingly
in Fig. 12(b). In fact, increasing mesh size decreases the
average distance to neighbour centroids and hence reduces
the number of steps the given optimization implementation
considers. Consequently, for given constant minimum step
size, changing mesh size does not significantly affect the
execution time of node updates. The largest VIM-produced
mesh presented in this paper in Fig. 10(b)(right) has more
than 20 thousand elements and took 15 minutes to generate
on a 2.33 GHz processor using a C implementation having no
particular optimization.
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Fig. 12. Given as a function of number of voxels (603, 803, and 1003),
(a) connectivity update time per iteration for meshes with 125, 216, and 343
nodes; and (b) node update time per iteration for minimum optimization step-
sizes of 1, 0.5, and 0.1 voxels.

In the 3D implementation, the corner nodes of the given
rectangular prism shaped domain are kept fixed during the
optimization process, while the nodes on faces and edges are
allowed to move tangentially. The position of the internal
nodes are optimized as described. These constraints can be
relaxed and non-prism domains can be accommodated using
(outer) domain-boundary complying techniques as in [33].
Note that, if desired, nodes can also be added to the mesh
during optimization, such as near elements contributing a
higher cost E.

E. Mesh Sizing

A desired local mesh-size was achieved in [33] by defining a
weighted volume from a background density distribution. This
was used to generate smaller elements to model higher cur-
vature surfaces. A similar approach can be used to effectively
refine FEM meshes near smaller anatomical features or higher
strain regions. For instance, consider the synthetic image in
Fig. 13(a) representing two circular anatomical features of
different sizes. A standard VIM optimization starts from an
initial uniform mesh distribution such as in Fig. 13(b), which
subsequently converges to Fig. 13(c). Note that the small
feature in the center cannot be represented well at this mesh
size. Alternatively, a mesh sizing field (density function) shown
in Fig. 13(d) can be imposed leading to an increased element
resolution near the center as demonstrated in Fig. 13(e).

Our geometric cost EG can be modified using a sizing
field in order to obtain denser meshes near desired features.
For the purpose of this example, an alternative approach was
followed by using the sizing field only in the initialization
process with EG alone. Subsequently, our regular optimization
scheme VIM was initialized with this nonuniform mesh seen in
Fig. 13(e). This converges to the local minimum configuration
in Fig. 13(f), where the small feature is seen to be successfully
modeled by this mesh. Note that although the overall number
of nodes/elements are the same in the uniform and nonuniform
meshes presented in Figs. 13(c)&(f), the nodes/elements in the
latter one are concentrated where they are actually needed.

In order to take advantage of varying mesh resolution for
medical images, a desired sizing function has to be determined
such as by extracting the features of interest. Alternatively,
such sizing can be integrated into the optimization process

(a) (b)
0

0.2

0.4

0.6

0.8

1

(c)

+

(d) (e)
0

0.2

0.4

0.6

0.8

1

(f)

Fig. 13. Demonstration of using a sizing field for variable element sizes
throughout the domain: (a) synthetic image, (b) initial and (c) optimized
meshes with uniform element sizing; (d) the image and the element sizing
field to be imposed; (e) initial and (f) optimized meshes with the application
of this sizing field.

using an adaptive method, e.g., such that the mesh density
around elements with higher intensity variation is increased.

F. Relationship to deformation and FEM

There exist methods as part of FEM post-processing that
can refine or modify a mesh based on a computed simulation
output such as element strains during deformation. This re-
quires running the simulation first, which in turn necessitates
a priori knowledge of the boundary conditions. These may
not be known prior to meshing, or their location and nature
may change substantially from simulation to simulation, e.g.
as medical tools interact with the anatomy. Moreover, although
post-process refinement techniques adjust node/element den-
sity locally, they do not formulate an intrinsically optimal
placement for an element. Unlike in mechanical/civil engineer-
ing, larger deformations are involved in medical simulations
and simulation accuracy around important anatomical features
are often preferred over accuracy at high-strain regions (which
are mostly the medical tool contact points). Our proposed
method optimizes meshes assuming that there is no prior
knowledge of the boundary constraints.

Advances in ultrasound and MR-based elastography of-
fer significant potential for our method, since elastography-
recovered tissue values can be assigned to mesh elements
for subsequent FEM use with minimal loss of information
during discretization. In this paper, a vibro-elastography image
meshing example is provided in Fig. 11. There is substantial
work in the literature on the identification of mechanical
tissue features such as the tissue elastic modulus from such
elastography data [39].

VII. CONCLUSIONS

In this paper, a penalty function based on FEM interpolation
error is combined with a proposed image-representation cost
and the combined objective function is minimized to pro-
duce high-quality FEM elements that also discretize a given
image in a desirable manner. With the emerging fields of
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elastography imaging and tissue parameter identification, this
method becomes a powerful tool allowing the unsupervised
single-step meshing of images with a low, and if desired
fixed, number of vertices. This enables the fast generation
of patient-specific models for deformation simulation. Note
that such an optimized discretization can be used further for
a fast approximate segmentation since the optimized elements
represent an image using far fewer degrees-of-freedom than
the underlying pixels.

The method was presented both in 2D and 3D using
synthetic data, MR images of brain, CT images of the kid-
ney, and elastography imaging of the prostate. These sample
medical image results along with comparisons with selected
meshing techniques in terms of mesh quality and surface
approximation demonstrate that the sound theoretical promise
of our proposed VIM method generates successful meshes
suitable for numerical simulations.
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