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Abstract. A key aspect for virtual-reality based ultrasound training
is the plausible simulation of the characteristic noise pattern known as
ultrasonic speckle. The formation of ultrasonic speckle can be approx-
imated efficiently by convolving the ultrasound point-spread function
(PSF) with a distribution of point scatterers. Recent work extracts the
latter directly from ultrasound images for use in forward simulation, as-
suming that the PSF can be known, e.g., from experiments. In this paper,
we investigate the problem of automatically estimating an unknown PSF
for the purpose of ultrasound simulation, such as to use in convolution-
based ultrasound image formation. Our method estimates the PSF di-
rectly from an ultrasound image, based on homomorphic filtering in the
cepstrum domain. It robustly captures local changes in the PSF as a
function of depth, and hence is able to reproduce continuous ultrasound
beam profiles. We compare our method to numerical simulations as the
ground truth to study PSF estimation accuracy, achieving small approx-
imation errors of ≤ 15% FWHM. We also demonstrate simulated in-vivo
images, with beam profiles estimated from real images.

1 Introduction

Ultrasound is a relatively low-cost and risk-free medical examination modality.
The existence of various ultrasound-specific artifacts necessitate extensive train-
ing of sonographers, since standard examination procedures like the assessment
of the gestational age of an embryo can lead to a life or death decision in the
face of a possible abortion. It was suggested in [17] that medical students have a
chance to learn only 80% of the important pathologies after one year of education.
These show the enormous untapped potential of virtual-reality based simulation
of ultrasound examination to boost the success rate of medical procedures, where
arbitrary scenes, pathologies, and embryo instances can be simulated.

One aspect of ultrasound (US) interaction with tissue is through its scatter-
ing by sub-wavelength tissue structures and particles, herein called scatterers.
This interaction creates the typical interference patterns known as ultrasonic
speckle. Speckles can be efficiently approximated by convolving a point-spread-
function (PSF) with said scatterers [2, 13, 5]. The interactions of the US beam
with macro-level surfaces (comparable or larger than wavelength) can be sim-
ulated, e.g., using fast ray-tracing methods at interactive rates [4]. An inverse-
problem approach of reconstructing scatterer parametrizations based on speckle



observations was proposed [11], such that plausible images of the observed tissue
can be generated in simulations from its a-priori imaging examples. One of the
major standing issues with inverse-problem scatterer reconstruction, however, is
the point-spread-function (PSF) being unknown in general. The same is true for
convolution-based image simulation, where the knowledge of PSF is also required
as a fundamental input parameter.

While PSF estimation has been studied thoroughly in the context of blind
deconvolution for improving US image fidelity, to the best of our knowledge it
has not been investigated before in the context of ultrasound image simulation
for training. Currently, the state-of the-art [2, 13, 5, 4, 11] is to manually define
and hand-craft a PSF, which is tedious technique, also not generalizable for
changing imaging parameters. A PSF estimation method for the limited case of
1D deconvolution and minimum phase signals in the cepstrum domain has been
introduced for ultrasound by Jensen et al. [8] and applied to in-vivo data [7].
The more general case of non-minimal signals typically require the solution of
an ill-posed phase unwrapping problem [18, 20, 19]. Luckily for these methods,
locality is not required for the purpose of deconvolution, and hence constant
kernels suffice as input for the Wiener filter [18].

For our purpose of 2D US simulation, however, these methods do not work
well. Convolution-based US simulation demands a smoothly-varying PSF to
achieve the realism of an actual ultrasound image, and to teach aspiring sonogra-
phers the subtleties and effects of ultrasound beamforming on the image forma-
tion. The PSF varies not only with transducer geometry and acquisition settings,
but it also changes locally as a function of depth (e.g., for a focused beam), and
on a point-per-point basis as an effect of the underlying tissue. Hence a globally
constant, or even a piece-wise constant PSF does not capture the complexity of
a real continuous PSF distribution as a function of position.

We herein introduce a novel cepstrum-domain algorithm to approximate the
PSF locally from an input US image to be used in simulations. Our goal is to
(robustly) estimate beam profiles from actual images in order to use those later in
common convolution-based (similarly, as well, in ray-tracing based) image sim-
ulation for training. Assuming separability of the PSF, our algorithm avoids the
challenging problem of cepstrum-based estimation in 2D. Instead, we achieves
robustness by sampling and combining many 1D cepstrum measurements via
interpolation. Our estimated PSF can be subsequently used for simulation, with-
out any manual modeling effort needed for this important aspect of ultrasound
imaging. We demonstrate this in simulated and in-vivo images.

2 PSF Estimation from Image Data

In the typical convolution model of ultrasound speckle [2, 13, 12], the reflective
image intensity r(x, y) results from the convolution of a tissue model g(x, y) with
PSF h(x, y) given noise n, i.e.

r(x, y) = g(x, y) ∗ h(x, y) + n (1)



where x denotes the lateral and y the axial transducer axes. Commonly, h(x, y) is
approximated by a periodic signal of acquisition center-frequency fc modulated
by a Gaussian, e.g. in [5, 4]. PSF is then of the form

h(x, y) = e
− x2
σ2x
− y

2

σ2y cos(2πfc) , (2)

which is a function that is separable to lateral and axial components. We use
separability to efficiently estimate the axial and lateral h components directly
from an US image, given as a spatial discretization r[x, y] of radio-frequency (RF)
data. While the additive noise n in Eq. 1 can be handled using standard filtering
techniques, finding the PSF from an image of reflective intensities r requires the
contribution of PSF h to be separated from the reflected echo g from the tissue.

Homomorphic filtering is a signal processing technique [9] for separating
a Fourier domain signal into its components. Using this, the signals h and g in
Eq. 1 can be decoupled in Fourier space as follows:

log(F(h ∗ g)) = log(H ·G) = logH + logG, (3)

where F denotes the Fourier transform and the capitals represent Fourier trans-
forms of signals. Since a given signal is not necessarily minimum phase, complex
logarithm is employed [3], i.e. logH ·G = log(R) = log(|R|ejφR) = log |R| +
jφ(R), where φ(R) denotes the unwrapped phase of the signal.

The main assumption of homomorphic filtering is that H is a relatively
smooth function in Fourier space, in comparison to the typically highly vary-
ing and discontinuous nature of tissue G. As such, the components of H can be
separated from the components of G by using lowpass filtering in the so-called
cepstrum domain. The cepstrum is defined as c = F−1(logR), and constitutes a
complex function c(n) of the so-called quefrencies. Ideally, the first few compo-
nents of c (up to a cutoff) contain only the PSF components of the input image.
Using inverse cepstrum transformation on this truncated cepstrum c′ then gives
an estimation of PSF, i.e.,

h ≈ F−1(exp(F(c′))). (4)

In practice, a perfect separation between components is often not achieved.
Several strategies have been proposed to improve robustness by increasing the
separation between H and G in the Fourier domain. We adopt the strategy of
exponential pixel weighting [9, 23]. For each measurement location, each data
point within a surrounding window is multiplied by a factor w=αd, where α < 1
and d is the distance from the upper left corner. This ensures a monotonically
lower influence of farther signal values to a measurement in Eq. 3. This window-
ing technique is used herein to compute localized but spatially-smooth cepstrum
measurements.

For ultrasound, homomorphic filtering has been used in the context of US
deconvolution for image restoration in 1D, 2D, and 3D [6, 18, 20, 19]. These face
several challenges, however, since in-vivo tissue and clinical scans are corrupted
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Fig. 1. Our method for robust estimation of a smoothly varying PSF.

by noise and contain artifacts and strong specular reflections hindering above
approaches. For instance, a major challenge is due to the high sensitivity of
phase unwrapping to noise, even more so in higher dimensions [10, 20, 19, 14].
Alternatives to phase unwrapping based on logarithmic derivatives exist [16, 18],
but these are prone to severe aliasing artifacts. Instead, we propose the following.

3 Proposed Technique for Local PSF Estimation

As input to our method we use the raw radio-frequency (RF) data from a US
scan. From an RF image r[x, y], our algorithm computes a PSF h[y] as a function
of axial position y, while smaller lateral variations in x are ignored to employ
averaging to increase estimation SNR. We describe below the three steps of our
PSF estimation algorithm, which are also depicted in Figure 1.
Robust cepstrum estimation. The purpose of this step is to avoid instability
and improve SNR of homomorphic filtering. Assuming a separable PSF, Eq. 3 is
used twice per sample location to separately find the axial and lateral compo-
nents of the cepstrum, respectively. Phase unwrapping can then be reduced to a
1D problem in either direction, which can be solved efficiently. Noise-corrupted
phase unwrapping in 1D can still cause a corrupted cepstrum measurement,
which would negatively influence the following steps. Fortunately, a potentially
corrupted measurement can be detected from cepstrum values c(n) as follows:
While c(1) encodes the overall image brightness similar to a DC component [10],
c(2) and c(3) influence the shape of the estimated pulse. Suggestions for plausible
cepstrum values and their interpretation are described in detail in the cepstrum
literature, e.g. for c(2) in [20]. Based on these, we empirically defined valid cep-
strum measurements as 2≤|c(2)|≤6 and |c(2)|≤|c(3)|. We use these constraints
as an outlier test, such that only the cepstra c̄ that pass this test are employed
in the following steps.

For each axial index y we compute a set of local cepstrum measurements
c{[yi]}, separated by lateral sampling distance δ (in our implementation δ=4
RF lines/pixels), depicted as red dots in Figure 1. We then compute both axial
and lateral cepstra for each such sample point yi, by giving importance only



to local neighborhood via exponentially weighted windowing. As the cepstrum
c[y] at a given arbitrary axial position y, we compute the arithmetic mean over
valid cepstra c̄{[yi]}. Following this, we also average c[y] over lateral measure-
ments (depicted by blue dots in Figure 1), to remove lateral PSF variation while
preserving and estimating its axial variation.
Axial filtering in cepstrum domain. A global or piecewise-constant PSF
were proposed in previous works [6, 18, 20, 19]. Global PSF for the entire image
is not a viable option for simulation, since PSF varies significantly in the axial
direction and mimicking this is essential for a plausible simulation. A piece-wise
constant (PWC) PSF approximation leads to discontinuities in the simulated
image; and a simple interpolation of such PWC h[y] in the spatial domain would
not give a properly defined PSF, due to the frequency component of h. It was
proposed in [21] to avoid image discontinuities due to discrete PSF kernels by
running several simulations using different PSFs and merging resulting images
in a weighting scheme. Alternatively, we use a filtering of axial cepstrum mea-
surements c[y] to obtain a smoothly varying function in the cepstrum domain,
which subsequently can be transformed into a smoothly varying h[y]. A Gaus-
sian window of standard deviation σ is applied on c[y], where σ corresponds to
an empirically set scale of expected PSF variation. Each value is then weighted
by the number of valid cepstra c̄{[yi]}. The filter width n was set to 256 samples
in our implementation, corresponding to ≈ 5mm for given sampling frequency.
A σ = 80 RF samples (corresponding to a 3σ range of ≈ 4.6mm) results in a
successful trade-off between smoothing and variations.
PSF estimation from cepstrum. We compute the PSF h[y] from c[y] as
follows. For each h[a], we recover the lateral and axial pulse profiles by applying
the inverse transformation from Eq. 4 to the truncated cepstrum c′[a] after cutoff.
The separable 2D PSF for each y is computed from the 1D pulses by convolution.
A remaining problem is that Eq. 4 aligns h with the upper left corner of the
image and hence does not constitute a proper impulse response. Assuming a
pulse similar to Eq. 2, to get a centered PSF we first compute the envelope
E = max(|H(h)|) to remove the frequency component, and then center the
maximum intensity max(E) in the lateral and axial directions. Since the envelope
of an idealized PSF corresponds to a Gaussian, centering the maximum intensity
also corresponds to centering the mean of the signal.

4 Results and Discussion

To find the ideal value of the cepstrum cutoff, using 1/6th of the PSF Full-
Width at Half-Maximum (FWHM) was recommended as a rule of thumb in the
literature [18]. FWHM is the extent of a pulse where its intensity is half of its
maximum value. In our implementation, we permanently fixed the lateral and
axial cutoff to the first 4 and 5 quefrencies of c, respectively. The parameter α
for exponential weighting, typically in the range of [0.965, 0.995] [23], was set to
0.975 for all experiments. Figure 2 demonstrates local PSF estimation from a
FieldII-simulated image (a) as input. For simulation, a 6.6 MHz linear transducer



(a) Input image. (b) PSF comparison for 3 axial positions.

Fig. 2. Comparison of FieldII-simulated PSF and estimated PSF for a Cyst phantom.

with sampling frequency of 40 MHz and a width of 40mm was used with a single
transmit focus. To illustrate axial PSF variation, fixed receive focus points were
used. A qualitative comparison of the FieldII PSF with the PSF estimated by
our method in Figure 2(b) demonstrates an excellent agreement. Table 1 gives
a numerical comparison of FWHM from simulated and estimated PSF at the
illustrated three depths, which shows that the estimated values are in good
agreement with the FWHM of the FieldII PSF, with differences < 15%. Added
Gaussian noise affects our method minimally; up to a noise level of 40dB, where
significant errors are observed.

Figure 3(a) visually compares FWHM for different values of axial filtering
parameter σ. This illustrates our method in the case of PSF discontinuities in
the original beam profile, which are caused by using multiple receive focus points
equally-spaced with 20mm separations. Despite the discontinuities, our method
can faithfully approximate the original FHWM values and the general shape of
the curve. While there is certain variation among the methods, they all converge
to similar values in the far field. The lateral spread of local PSF, obtained as
the aggregation of a fine discretization of local PSF envelopes placed along a
vertical line, is shown in Fig 3(b) and called herein beam shape. It demonstrates
that the estimated PSF is a smoothly varying function and in good agreement
with FieldII simulation. Figure 3(c-d) show results for dynamic receive focusing,

Table 1. FWHM of estimated and FieldII-simulated PSFs, and the normalized errors.

Depth [mm] 40.4 60.6 86.6 40.4 60.6 86.6 40.4 60.6 86.6 40.4 60.6 86.6

FWHM Lateral [mm] Axial [mm] Lat. error [%] Ax. error [%]
Noise-free 1.38 1.18 1.90 .262 .263 .258 0 7 0 6 11 5
70 dB noise 1.36 1.18 1.89 .263 .263 .257 1 7 0 1 11 4
50 dB noise 1.23 1.11 1.55 .244 .240 .210 21 1 13 1 2 19
40 dB noise 0.52 0.62 0.48 .194 .185 .142 167 79 291 26 27 73

Ground-truth 1.38 1.11 1.89 .246 .234 .246 0 0 0 0 0 0



(a) Multiple (20mm separated) receive focus points (b) Beam shape

(c) Dynamic receive focusing (d) Beam shape

Fig. 3. Full-Width-at-Half-Maximum (FWHM) of PSF over entire axial range of cyst
phantom for 3 levels of axial filtering and two types of receive beam-forming; together
with corresponding (lateral) beam shapes. The transmit focus is fixed at 60mm in
both cases.

where PSF variations are smaller. In this case, a better estimation accuracy is
indicated by our results.

Figure 4 uses the estimated PSF for convolution-based simulation. In this
example, the continuous set of 100K scatterers from a FieldII cyst phantom was
discretized on a scatterer grid of 2701 × 1024 pixels. This map was convolved
with the PSF estimated from FieldII simulation, where the simulated image
should ideally be equivalent to the FieldII image. As baseline comparison, we
used a technique form deconvolution literature, in which PSF estimation has
most commonly been investigated. In particular, we approximate the PSF by
(piecewise-)constant kernels; two in our case for the near and the far fields,
c.f. Figure 4(b). The discontinuity between the two PSF kernels can be seen
clearly as artifacts in the speckle pattern around 60mm depth, making this
method a poor choice for simulation. Conversely, the proposed PSF estimation
method in Figure 4(c) exhibits a smoothly varying speckle appearance. Our
method is visually in good agreement with the original image in Figure 4(d),
with a focus sharper near 60mm. For the anechoic cyst at 60mm, we computed
contrast-to-noise ratio (CNR) as an indicator for visibility of pathology. Using
CNR= |µI1−µI2 |σI1+σI2

, where I1 and I2 denote B-Mode pixel intensity values of the
cyst and the surrounding tissue, respectively, resulted in 1.05dB for piecewise-
constant PSF estimation and 1.16dB for our local PSF estimation, which is



(a) Scatterer map (b) PWC PSF (c) Local PSF (d) Ground-truth

Fig. 4. Convolution-based simulation for the cyst phantom: (a) Discretized scatterers,
100× downsampled; (b) using 2-part piecewise-constant PSF with near- and far-field
parts; (c) proposed local PSF estimation with σ=80; (d) ground-truth FieldII image.

(a) Input image (RF envelope) (b) Sample PSF (c) Beam shape

Fig. 5. (a) Liver scan acquired with a convex probe. (b) Samples of the estimated PSF
at 4 depths. (c) Beam shape as the smooth (lateral) variation of local PSFs.

closer to the observed value of 1.15dB and indicating a contrast drop (and
hence potential mis-training) in the case of inadequate PSF.

Figure 5 shows the example of an in-vivo liver scan. The input image (shown
as envelope image on the left without dynamic compression) was captured with
a SonixTouch 4DC7-3/40 convex probe operating at 4.5 MHz with 20 MHz sam-
pling frequency and a transmit focus placed at 80mm. The middle image shows
estimated PSF at four depths marked in the left image. Note that since the
estimation is performed in the pre-scan-converted RF data, convex images are
also handled easily. The rightmost image depicts the continuous beam shape. As
expected for a convex probe, it exhibits an almost linear increase of the beam
width, where the focus is also discernible. The run time of the PSF estimation
for this image was 13 minutes, in MATLAB with an Intel i7-4900MQ 2.8GHZ
CPU with 24GB memory.



Discussion. Compared to earlier PSF estimation works such as [14, 18], our
3-stage approach has the most similarities to methods on separable deconvolu-
tion [1, 22], with some important differences: For the actual deconvolution, these
earlier works simply use an averaged global kernel, whereas we employ additional
local information exploiting separability. In contrast to our method, these previ-
ous methods make a single axial/lateral cepstrum measurement per axial/lateral
scanline. As a result, they can capture lateral variation of the PSF w.r.t. image
depth, but not the axial variation. Although the latter is potentially less pro-
nounced than the former, it nevertheless still influences speckle statistics [15].
Instead, our algorithm first employs averaging in lateral direction followed by
axial filtering, hence taking into account both lateral and axial components for
each axial position. This allows us to robustly capture variation in both lateral
and axial PSF components. A potential limitation of our method is that RF
images are not accessible on most commercial ultrasound systems. Furthermore,
to achieve simulation realism, not only the PSF but also the (proprietary) image
post-processing steps should match those of a commercial system.

5 Conclusions

We have hereby presented a method to estimate PSF and its spatial variation
from ultrasound images. This is to be used in US training simulation of linear
and convex transducers. Despite several studies on both PSF estimation and
convolution-based simulation, these fields have not been fused yet. We believe
that both (convolution-based) US simulation and other potential uses of US PSF
are of significant interest to medical ultrasound community. As evaluation, we
presented visual and numerical comparisons of the acquired PSF with the PSF
from numerical simulations. We also demonstrated an example of estimating
PSF and the beam shape from a 2D in-vivo image. A 3D extension is to be
studied in future work. This work was supported by the Swiss Commission for
Technology and Innovation (CTI).
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