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Image-based Reconstruction of Tissue Scatterers
using Beam Steering for Ultrasound Simulation
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Abstract—Numerical simulation of ultrasound images can
facilitate the training of sonographers. An efficient and realistic
model for the simulation of ultrasonic speckle is the convolution
of the ultrasound point-spread function with a distribution of
point scatterers. Nevertheless, for a given arbitrary tissue type,
a scatterer map that would generate a realistic appearance of
that tissue is not known a priori. In this paper, we introduce
a principled approach to estimate (reconstruct) such a scatterer
map from images, by solving the inverse-problem of ultrasound
speckle formation, such that images from arbitrary view angles
and transducer settings can be generated from those scatterer
maps later in simulations. Robust reconstructions are achieved
by using multiple measurements of the same tissue with different
viewing parameters. For this purpose, a novel use of beam-
steering to rapidly and conveniently acquire multiple images
of the same scene is proposed. We demonstrate in numerical
and physical phantoms and in vivo images that the appearance
of synthesized images closely match real images for a range
of viewing parameters and probe settings. We also present a
scene editing scenario exploiting these scatterer representations
to create realistic images of augmented anatomy.

I. INTRODUCTION

Ultrasound (US) simulation is essential in the context of
virtual-reality training of medical students and personnel.
Ultrasound is a radiation-free, low-cost, and real-time medical
imaging modality, and hence it is commonly used in clinical
examinations. However, its low signal-to-noise ratio and the
existence of various ultrasound-specific artifacts necessitate
extensive training of sonographers for performing a particular
ultrasound examination technique and/or the imaging of a
specific organ. Current standard education is in the form
of imaging plastic phantoms and mannequins, as well as
supervised examination of real pathology from patients during
clinical practice. The former are not sufficiently realistic,
and the latter requires additional time investment of both
qualified personnel (the supervisor) and the patient, as well
as potentially compromising the medical service the patient
receives. With the above, another challenge is the training of
rare pathologies. Reis et al. [30] reports that during one year
of standard education the medical students have a chance to
learn only 80% of the important pathologies. For example,
assuming that approximately 100 pregnancies are attended by
an obstetrics and gynecology expert a year, heart-failure (a

Manuscript received Feb 1, 2017; revised Sep 8, 2017; accepted Oct 23,
2017. This work was supported by the Swiss Commission for Technology
and Innovation (CTI) and the Swiss National Science Foundation (SNSF).

O. Mattausch and O. Goksel are with the Computer-assisted Applications
in Medicine Group, Computer Vision Lab, ETH Zurich, Switzerland.

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

relatively common condition) will be observed on average
once a year, whereas skeletal malformation (a rare 1/5000
condition) may take 50 years to encounter – longer than the
typical career of an obstetrician. These rare pathologies are
still of utmost importance to identify, arguably even more so
than common cases; and with such low occurrence rates their
training on actual patients becomes unlikely. Other common
decisions judged from US imaging can also be quite crucial,
such as the assessment of embryonic gestational age in the
face of a possible abortion; thus, a standardized training of
sonographers is highly desired. These indicate the need for
computer-based training of ultrasound examinations, where
different anatomical scenes and pathologies shall be simulated
in a virtual-reality environment realistically and in real-time.

Interpolative methods use pre-recorded patient data, through
which an ultrasound plane can be sliced in simulation time
without [1] or with [11] tissue deformation taken into account.
Despite yielding photo-realistic images, this constrains the
simulations drastically by only allowing simulation at voxels
where data is available and also limiting image settings and
viewing angles to those used in the acquisition. Wave-based
simulation, such as Field II [17], is an alternative that is
accurate but slow and thus typically used only for offline
simulation. Ray-based methods [6], [22], [23], [42] are suitable
for interactive US generation and can successfully model
ultrasound interactions with large-scale structures. However,
they are less suited for simulating sub-wavelength interactions,
at the scale of which wave-like properties become predominant
and create the typical noise patterns known as ultrasonic
speckle. These are caused by the interference of scattered
echoes from countless microscopic structures in the tissue,
commonly called scatterers.

For given scatterers, convolution techniques can generate
ultrasound images with realistic speckle patterns [4], [10].
However, a scatterer representation of an anatomical volume
is often not readily available. Therefore, in convolution-based
simulations (e.g., Field II and ray-based methods [6], [23])
scatterers are typically created as statistical distributions of
continuous spatial variables [17], [25]. Then, the problem
becomes how to tune a suitable parametrization for generating
a particular tissue type. One approach is the tedious process of
manual trial-and-error by observing generated images, but this
would quickly become infeasible, since the final appearance
relates to scatterer distribution in a non-trivial fashion [28].
Due to above complexities, images simulated with these tech-
niques often appear artificial and toy-like [17]. For instance, a
sample fetus image modeled and simulated using the scatterer
parametrization of [6] is shown in Fig. 1, which looks still
artificial despite a considerable amount of manual effort [23]
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(a) Simulated image (b) Real image

Fig. 1. Interactive simulation (a) and real image (b) of a fetus. Simulated
ultrasound tissue created by hand (e.g., using parametrization [6]) are often too
toy-like to convince specialists in virtual training simulations [23] and miss the
complexities of actual tissue (see marked tissues). Our method automatically
creates realistic tissue models for such simulations.

for parameterizing scatterer distributions aiming for realism.
We propose herein to extract scatterer maps and patterns

from example images. This can be used to approximate
an underlying scatterer representation that would create the
observed image, when given as input to a convolution-based
simulation, but also allowing to alter imaging frequency, probe
geometry, viewing direction, and others in such simulation
process. Speckles in the image-space are then transformed into
a scatterer representation as a physical-space representation of
the imaged anatomy. Furthermore, distributions and paramet-
ric representations can be extracted and learned from such
scatterer instances, e.g., to model a particular tissue type from
given image samples.

In our previous work [20], preliminary results of an in-
verse method for estimating scatterers were presented. Therein
single images were used for estimations, which is hereby
shown to yield suboptimal scatterer reconstructions that are
not robust to change of viewing parameters. Furthermore, such
parametrizations often lack the visual variety of real tissue,
such as micro-vasculature, muscle fibers, fat streaks, micro-
calcifications, and other imperfections.

Alessandrini et al. [2] proposed a pipeline for the simulation
of synthetic echocardiographic sequences. For this, an image
region is populated with randomly-placed points, the ampli-
tudes of which are set using B-mode images after removing the
effect of logarithmic-compression using an inverse-log scaling.
These points form a non-Cartesian interpolation grid, which
can then be relocated, e.g., for animating deformation. An
image is subsequently simulated using the fast convolution
algorithm COLE [10]. This method was shown to provide
visually pleasing echocardiographic images by the authors [2],
and is similar to ours in that point amplitudes are obtained
from sample ultrasound images. However, these interpolation
points are not ultrasound scatterers as defined in our and earlier
models, as the actual complex-valued (e.g., cosine modulated)
PSF is not considered and the extraction is performed from
scaled B-mode (pseudo-envelope) images, which do not con-
tain the RF phase information. This prohibits, for instance, the
modeling of (destructive) interference between scatterers, and
thus its simulation afterward.

We propose an inverse-problem approach to reconstruct
scatterers based on speckle observations, such that plausible

Fig. 2. Problem definition. From one or many input images of the same region
of ultrasonic speckle, a map of scatterers is created by solving an inverse
problem (in orange, from left to right) . Such scatterer map is for simulation
of new images of the same tissue with different imaging parameters (in blue,
from right to left).

images of this tissue region can be generated in simulations.
An overview of our method is shown in Fig. 2, where the
orange color refers to the inverse problem, and blue to the
forward problem of ultrasound simulation. Electronic beam
steering is used to acquire several ultrasound images of a
tissue region as raw beamformed radio-frequency (RF) data,
using a single input image to estimate the ultrasonic point-
spread function (PSF). Given this PSF and RF images, a
deconvolution inverse-problem can be setup to find a scatterer
realization robustly, due to the multiplicity of input images.

These scatterers can later be used directly or in a modified
form, with the original or an altered PSF, to generate new
simulated images of this tissue region. This is achieved by
using ultrasound convolution of the scatterers with the PSF to
obtain a new RF image, which is finally converted to a typical
B-mode image after post-processing.

Our problem setup has similarities with blind deconvolution
methods [7], [26]. However, unlike these methods our goal is
not the true-to-real restoration of blurry US images. Instead,
we aim to find a scatterer representation that can be used
to realistically synthesize new US images under potentially-
different viewing conditions; e.g., from a different viewing
direction as shown in Fig. 3 (a) or at a different imaging
frequency. Accordingly, we propose a robust reconstruction
method by means of constrained regularized optimization
using the `1-norm. To achieve robustness with respect to
varying view directions, we propose to use multiple input
images. Since the precise acquisition of linearly-independent
image observations can be difficult using external mechanical
setups or position tracking, a novel use of electronic US beam-
steering is introduced.

II. BACKGROUND

Forward problem (FP) of speckle formation. We assume a
well-established convolution model of ultrasound speckle and
its simulation [4], [25]. This model is presented below in 2D
(ignoring the finite ultrasound beam-thickness), nevertheless,
it could extend to 3D without loss of generality [10]. In
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(a) Different viewpoints (b) Convolution

Fig. 3. (a) Multiple viewing directions in typical ultrasound examinations,
often to avoid or to leverage US-specific artifacts such as shadowing and
enhancement. During simulation, simply rotating images would not generate
correct speckle appearance; therefore, manipulation in a physical-space is
needed. (b) Forward and inverse problem of speckle formation, to reconstruct
a physical representation of tissue scattering.

this model, ultrasonic speckle intensity I(l, a) is obtained
by convolving point-like scatterers g(l, a) in the tissue with
the ultrasonic impulse response h(l, a), also called the point-
spread function (PSF), i.e.:

I(l, a) = g(l, a) ∗ h(l, a) + γ(l, a) . (1)

γ(l, a) is an additive random noise term. (l, a) is the lateral and
axial position with respect to the probe origin (cf. Fig. 4(a)).
Alternatively, for a convex probe, the position can be repre-
sented in polar coordinates with angle l and radius a.

In a typical US transmit-receive imaging sequence
with in-plane focusing, the PSF h(l, a) can be approx-
imated as a cosine modulated Gaussian pulse [6], i.e.,

h(l, a)≈e
l2

2σ2
l

+ a2

2σ2
a cos(2πfa). f represents the imaging center

frequency, and σl and σa are the spreads of the Gaussian pulse
in corresponding directions. Note that in Eq. (1), h can change
locally and hence both σ’s can themselves be a function of
a and l. In this work, we consider PSF changes based on
the axial distance a from the transducer due to focusing,
aperture, transducer geometry, etc, while ignoring lateral PSF
changes, similarly to earlier simulation works [6], [23]. The
PSF corresponding to a given axial image depth is denoted as
ha and can be determined empirically from observations (e.g.,
by imaging wires in degassed water) [32] or from acoustic
simulations, e.g., using Field II [27].

In this work, we used a Field II-simulated PSF for the
computer phantom results. For the in vivo results, the PSF was
derived directly from input image observations as follows.
PSF Estimation. A number of methods exist that estimate
PSF from input US images based on homomorphic filtering in
the cepstrum domain, for the purpose of blind deconvolution
of ultrasound [36] in 1-3 dimensions [18], [19], [37], [38].
These methods can be differentiated by their strategies to
solve the difficult phase unwrapping problem [36], which is
highly sensitive to noise in 2 or 3 dimensions [37]. In this
work, we use a cepstrum-based PSF estimation method that
computes local smoothly-varying PSF ha [21], avoiding the
phase-wrapping problem in 2D by assuming the PSF to be
separable in the lateral and axial components. Homomorphic
filtering [36] is a signal processing technique for decoupling
signals h and g in Eq. 1 into its components in Fourier domain,
i.e., log(F(h ∗ g))=log(H ·G)=logH+logG. F denotes the
Fourier transform and the capitals represent Fourier transforms
of signals. It basically converts the image to the cepstrum

Fig. 4. Time-gain compensated RF image (left) is the input to our method.
The envelope of the signal (magnitude of Hilbert transform) and the dynamic-
range (log) compressed B-mode versions are also presented above.

domain, where the convolution becomes a linear combination
(addition). Since the PSF component would change much
slower compared to the image content, low-pass filtering in
the cepstrum coefficients then yields the PSF. To gain robust-
ness, we solve all points at the same depth (with expectedly
similar PSF) simultaneously, and accordingly obtain a single
PSF estimation ha at that given depth – which are further
regularized to be smooth in the axial direction [21].

Scatterers g(l, a) are traditionally modeled with varying
amplitudes and spatial positions [17], [39]. Alternatively, a
discretized version of Eq. (1) can be used, e.g., for the purpose
of fast GPU-based convolution [6], [23]. With this, a discrete
tissue representation g[l, a] is convolved with a discrete PSF
h[l, a], yielding sparse speckle image intensities I[l, a].

Inverse problem (IP) of scatterer reconstruction. To solve
the inverse problem of finding a tissue representation g[l, a]
for given intensities I[l, a], convolution in a discretized Eq. 1
is expressed as a linear system Ax=b. As depicted in Fig. 3
(b), A is the convolution matrix induced by ha, x is a column
vector of scatterers obtained from vectorization of g[l, a], and
b is the resulting column vector of image intensities I[l, a].

Inverse problems have been studied extensively in the field
of US image deconvolution, for the purpose of negating the
blurring effect of the PSF in order to improve the signal-
to-noise ratio of an ultrasound image. To achieve visually
pleasing (smooth) results for moderately noisy input images,
the Wiener filter and �2-regularized optimization are natural
choices [15], [18]. Richardson-Lucy algorithm [9] is another
alternative, which optimizes the log-likelihood of a Poisson
distribution of scatterers, making it more robust to noise.

Formulations based on �1-norm have also been studied
for deconvolution [13], often in the context of sparse bases
for compressed US image reconstruction [7], as they are
naturally suited for sparse problems. Alternatively, methods
based on generalized Gaussian distributions (GGD) can be
used for models based on �p-norms, converging to a uniform
distribution for p=∞. This can provide more flexible noise
and regularization models, achieving Gaussian and Laplacian
distributions as limit cases for 1≤p≤2, as was also shown to
be beneficial for ultrasound deconvolution [44] and ultrasound
tissue characterization [3]. Likewise, hybrid regularization
terms combine the advantages of �2-norms and robust �1-
norms to handle outliers, most notably the Huber norm [14].
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III. METHODS

We are not interested in a visually smooth image recon-
struction resulting from `2-norm objectives. Instead, we aim
to find an intrinsic representation of the tissue, denoted here
as scatterer map, which can be used in subsequent forward
simulations (top row of Fig. 2). Our goal is hence, given
an ultrasound RF image as input (e.g., see Fig. 4), to recon-
struct sparse, point-like scatterers as a discrete approximation
to the underlying continuous convolution model (Eq. 1). A
scatterer map has to be sufficiently fine-grained for an accu-
rate discretization of the continuous scatterer model. Hence,
denoting n and m respectively as the dimensions of x and
b, we assume that n>m and that Ax=b is underdetermined,
unlike deconvolution methods where n typically equals to
m. Robustness must be ensured despite outliers, such as due
to brighter directional reflections not accounted for in the
convolution model. Accordingly, we assume a Laplacian noise
distribution for γ, which may also contain outliers. Based on
these requirements, we use an objective based on `1-norm
regularization, which is known to yield sparse and robust
solutions for underdetermined systems. Such objectives are
typically of the form:

x̂ = arg min
x

||Ax− b||1 + λ||x||1 s.t. x ≥ 0 . (2)

This favors sparse x with small scatterer amplitudes. The con-
straint ensures the physical fact that the scatterers should have
positive amplitudes. Unlike the better known `2`1 LASSO
formulation, we use an `1`1 formulation with an error mini-
mization term ||Ax − b||1 in the objective. This formulation,
known as RLAD (Regularized Least Absolute Deviations), has
been shown to be more robust than LASSO with respect to
outliers in the error distribution [40]. It is also less sensitive
to small variations of the λ parameter, since both terms in
the objective use the same norm. This allows us to fix λ
empirically to 0.005 in all examples in this paper.

For the vector of measurements b we use raw radio-
frequency (RF) data, which contains the phase information
of US echoes. The result x̂ is then a scatterer map which gen-
erates an approximation of the input image when convolved
with the given PSF. New images can be synthesized, e.g., by
applying the FP with the PSF of a different transducer ge-
ometry, or by editing (augmenting) the acquired scatterer map
before applying the FP, or by using the result in combination
with surface models in ray-traced simulations.

A. Robust Scatterer Reconstructions

Because of the anisotropy of a typical PSF, there is no
guarantee that the scatterer map computed from a single image
will produce robust speckle patterns from a different (e.g.,
rotated) viewing angle. In fact, due to the phase component
of the PSF, the scatterer map for a particular speckle image
may not be unique. It was also shown [8] that a small number
of periodically-placed equi-amplitude scatterers is sufficient
to generate a particular speckle image. Viewed from another
direction however, this minimal set of scatterers will in general
not be sufficient to recreate the speckle appearance of a
target tissue – an ambiguity that could lead to variations in

(a) Steered acquisition

(b) Steered PSF

Fig. 5. (a) Acquired envelope data for 2 images steered by 0◦ and 10◦,
scan-conversion into physical coordinate frame. (b) Field II-simulated PSF
of steered image (left), PSF estimated from said image, with steered angle
approximated by rotation of 0◦ PSF (right).

perceived brightness and other artifacts. For a single input
image this is an ill-posed problem. Thus, multiple linearly-
independent measurements are used to remove any ambiguity.
New measurements augment the linear system with additional
rows, i.e.,

[A>1 , .., A
>
n ]>x = [b>1 , .., b

>
n ]>, (3)

where Ai is the convolution matrix simulating image bi. For
such multiple observations bi, the transducer could, e.g., be
moved at tiny intervals laterally. However, this requires a
difficult setup and very accurate positioning. Alternatively, we
propose beam steering as a major contribution of this work in
order to acquire multiple input (RF) images bi of the same US
speckle region both very quickly and accurately, requiring no
hardware setup or add-on.
Electronic beam steering. Beam steering is an effective way
of acquiring a sufficient number of input ultrasound images
of the same region from different angles βi (see Fig. 5(a),
before and after scan conversion). More importantly, the beam
steering process is sufficiently fast to minimize motion effects
of the sonographer and the patient (e.g., breathing during
acquisition). Note that the PSF also changes with respect
to βi and hence results in varying Ai. These PSFs can be
simulated or approximated separately. In this paper, we make
a small angle approximation, as a steered PSF kernel can be
approximated well by a rotation of the 0◦ PSF kernel by βi.
For an estimated PSF, we use this fact by creating PSFs at
all depths for a 0◦ beam and then rotating those kernels ha
individually by β to easily obtain PSF estimations for steered
images. A comparison of such approximation to actual (Field II
simulated) PSFs is shown in Fig. 5(b).
Canonical reference frame. Combining the steered images
bi into the same canonical reference frame, i.e., the frame
corresponding to the 0◦ angle, effectively constitutes a more
uniform and isotropic coverage of the sampling domain (see
Fig. 6(a)). Note that rotated PSFs introduce lateral variance
(where a 0◦ PSF has low lateral variance) therefore adding
substantial information in resolving laterally spaced scatterers.
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Fig. 6. The beam steering mechanics allows to electronically change the viewing angle of a probe (a) and to easily acquire multiple image observations of
the same region (gray overlap) (b). Reconstructing scatterers of full image is made tractable by partitioning solution space into overlapping blocks (c).

To integrate all measurements into a single system, bi could be
transformed and scan-converted into new image measurements
b′i. However, resampling and interpolating RF lines is not a
well defined operation and would introduce additional errors,
and therefore is avoided in this work. Instead, we encode in
Ai this transformation operation between the reference frame
of measurements bi and the canonical reference frame (and
hence the space of scatterers x), which is defined by axial
position a in the beam propagation axis and lateral position l
centered at the transducer. Due to beam steering, the PSF ha

for a given axial position a is displaced at steering angle β by
offsets δl and δa s.t.:

δl = a tanβ ; δa =
√
l2 + a2 − a. (4)

δl and δa are used to displace the position of ha on the diago-
nal of matrix Ai, i.e., the values of ha are shifted downwards
on each column of Ai. Fig. 5(b) depicts how multiple steered
images map to the reference frame of the scatterer domain. The
bounding box of all (parallelogram-shaped) steered images
effectively cover a larger lateral region than a single ultrasound
image, i.e., extending by the maximum lateral offset max(|δl|)
in each direction. Thus, the scatterer solution space is set
accordingly to cover all images. In Aix=bi, the entries of
Ai corresponding to parts of the solution space which are not
covered by a given bi are masked to zero. Thus, a scatterer map
pixel x is affected only by an active set of images bi, and best
reconstruction results are to be expected in the center region
with information from all bi as shown by shades of gray in
Fig. 6(b). Design of typical ultrasound piezoelectric crystals
aim to deliver most power straight ahead and thus afford a
reduced efficacy at increased steering angles, with reduced
signal-to-noise ratio and hence unreliable measurements. To
cope with this, we weight angle contributions such that

[c1A
�
1 , .., cnA

�
n ]

�x = [c1b
�
1 , .., cnb

�
n ]

� (5)

where 0≤ci≤1 is the confidence in the corresponding steered
observation. These weights can be obtained from transducer
specifications or measured in experiments. In this work, we
empirically set the weights to linearly fall-off to 0 at a horizon
of βmax away from the non-steered 0◦direction, i.e., according
to the triangular function ci=max(0, 1−|βi|/βmax). We set
βmax=60◦. Other functions such as a Gaussian falloff is
conceivable, but these would have the drawback that for
extreme angles where the steered images contain mostly
noise, the confidence would never fall off to zero. Note that
an equal contribution of all steering angles with a constant

ci=1 corresponds to βmax=∞ in the above formula. The
linear system in Eq. (5) is our final problem formulation used
throughout the rest of this paper.
Boundary Conditions. To explain speckle intensities near the
edges of an input image bi, a common way is to populate
a margin of half the size of a PSF kernel and set boundary
conditions on the domain of interest by mirroring the input
data on the boundary. However, this strategy led to seams
in the reconstructed images due to edges of steered images
existing at many places (cf. Fig. 5(b)). Instead, we remove all
rows in Aix=bi that are not explained by actual data, assuming
that scatterers in border regions are constrained by at least one
of the other Ajx=bj , j �=i.

B. Scatterer map resolution

Since the scatterers are an abstract representation for the
approximation of sub-wavelength particles, there is indeed no
clear definition for their true resolution. Scatterer map resolu-
tion Rsc becomes important in our reconstructions, since, on
the one hand, an unnecessarily fine scatterer grid leads to high
complexity, increasing time and memory consumption and
reducing optimization robustness/convergence. On the other
hand, a very coarse grid does not allow sufficient degrees-of-
freedom to represent the underlying continuum, which one can
describe as uncountably-many scatterers placed at continuous
spatial locations. Also, Rsc has to be sufficiently fine for fully
developed speckles – a characteristics of typical speckles based
on Rayleigh statistics [28].

Using the native resolution of the input RF images Rrf

for Rsc, for instance, would lead to anisotropic sampling
and image artifacts in the rotated frames as well as when
utilizing rotated PSFs. Thus, for scatterer resolution some
necessary theoretical constraints must be considered: a) From
Nyquist, lateral sampling must satisfy ∆a≤λc/2, where λc is
the wavelength of maximum desired imaging frequency. Note
that this is an upper limit, and it might practically have to
be even smaller, e.g., λc/4. b) the sampling density should
be isotropic, or ∆a≈∆l for rotation invariance, and c) the
grid resolution must be sufficiently high for the local density
of scatterers to satisfy Rayleigh criterion to be able to create
realistic interference patterns for arbitrary transducer angles.
Since axially Rrf trivially satisfies (a), we choose to use this
as the axial resolution of Rsc. For the lateral resolution, we use
the nearest integer multiple of the lateral component of Rrf ,
which creates a near isotropic sampling. For a case with, e.g.,
40MHz RF sampling and a speed of sound as 1540 m/s, this
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results in ≈ 20 µm in both axes in this paper, yielding 50×50
scatterer map pixels per mm2. Assuming that roughly 1/10th

of all pixels are populated with non-zero scatterers based on
our sparsity constraint, the above results in a scatterer density
of 250 per mm2. This well exceeds the threshold of 100 mm−2

given by Oosterveld et al. [28] for a fully-developed Rayleigh
distribution of speckle intensities, and hence satisfies (c).
Mapping from scatterer space to RF space. Convolution of
a scatterer map with the PSF sampled at the same resolution
creates an RF image that is the size of the scatterer map, with
the RF line number based on our convention above being a
multiple k of the original RF image. To downsample to the size
of the input RF image (i.e., for simulating an image), every
kth RF line of this convolved image is picked. This can be
done by applying a decimation operator S accordingly, on the
vector of image pixels. A pixel of the downsampled RF image
is a linear superposition of contributing scatterers within a PSF
kernel radius. Conceptually, the same operator can be used to
construct the convolution matrix as A=SH , S ∈ Rm×n, H ∈
Rn×n, where H is an n×n convolution matrix in scatterer
space, and S is the decimation operator picking every kth

row to obtain an m×n matrix. In practice for simulation, we
numerically compute only the required decimated rows in A.

C. Domain decomposition

Attempting to solve for an entire US image with high axial
resolution and possibly multiple measurements within a single
linear system can quickly exceed the memory and computing
capacities of most computers. To make the problem more
tractable, we propose a strategy that can handle arbitrarily
large images with arbitrarily high resolutions. As illustrated
in Fig. 6(c), we partition the images into smaller domains that
can be easily solved individually, starting from top-left in a
greedy fashion. The individual solutions are combined into a
single scatterer map. Incorporating already-solved scatterers
into new blocks as boundary constraints avoids artifacts at
block-seams. In particular, we subtract the speckle contribution
of the previously computed scatterers (in the blue upper-left
borders) from the RF measurements bi of the current block,
and accordingly constrain the scatterers xi in the current block
to 0 in that border region (since they are computed/accounted
for in the earlier blocks). This effectively constrains these scat-
terers in the blue border region to their previously computed
values. For this purpose, we generalize the objective in Eq. 2 to
contain a regularization term with element-wise weighting, i.e.
λ||Wx||1. The diagonal elements W are set such that Wij=1
in the interior of a block and Wij=106 in the blue border
regions, resulting in a large penalty for non-zero scatterers. We
use a margin/overlap of width bl and ba of at least half the size
of the PSF kernel to avoid seams in the simulation along the
block borders, to ensure that all RF signal observations inside
the current block can be explained by scatterers including the
block margin. This heuristic guarantees that the solver finds a
feasible solution taking the surrounding scatterer contributions
into account. Although this solution may not be the global
optimum, we found that it is sufficient for the level of accuracy
that we demand from our optimization.

Beam-steered images. In the case of multiple steered images
in our block-wise solution, all domains corresponding to the
same index in Fig. 6(d) are solved simultaneously in a single
iteration. To find these domains, we define the patch to solve
in the scatterer solution space, and project it to each steered
images and use those regions in Eq. (5).

D. Implementation

We use the Alternating Direction Method of Multipliers
(ADMM) [5] for solving the objective in Eq. (2). ADMM is
known to be efficient for large problems where moderate pre-
cision is acceptable, unlike accurate but less scalable Interior
Point methods [20]. In particular, we use the ADMM solver
YALL1 [43], which supports RLAD objectives with positivity
constraints. A detailed description of how such problems can
be converted into an ADMM formulation is given by Boyd
et al. [5]. In our implementation, convolution matrices were
explicitly defined in Matlab using a sparse representation, with
a typical sparsity of 99.96% for, e.g., the experiment in Fig. 7.
All results were generated using MATLAB on a Intel Core
i7-4900MQ CPU with 2.8 GHZ and 24 GByte memory. Post
processing. The final B-mode image is obtained from the
scatterer map after convolution, envelope detection, time-gain
compensation, and dynamic-range (log) compression, using
the post-processing pipeline provided by the Amplio Toolkit
from Ultrasonix (Richmond, BC, Canada) (see Fig. 4, right).

IV. RESULTS

In the following we denote our scatterer reconstruction
method as ScatRecN, where N is the number of input images
used for reconstruction. The input images are taken in regular
angular steps over an angular range of ±M◦, where M
typically ranges from 5◦ to 30◦. For instance, ScatRec5±20◦

denotes our multi-view reconstruction method using image
observations at angles {−20, −10, 0, 10, 20}◦. Since the
goal of our method is ultrasound simulation, we compare
convolution-based [4] simulated images using scatterer maps
from our method with ground-truth (GT) images from a
known scatterer continuum. ScatRec1 not only constitutes
the simplest instance of our algorithm, but it is also used
as a baseline in this paper. Note, however, that ScatRec1
already profits from our contributions of using the constrained
RLAD formulation in Eq. (2) and the domain decomposition
of input image (Sec. III-C) for robustly handling sparse large
systems. The above are indeed advantages of ScatRec1 over
the scatterer reconstruction method in [20], which is only
suited for small patches and unable to solve large systems,
e.g., entire ultrasound image frames.
Experimental setup. ScatRecN±M◦ is used to reconstruct a
scatterer map from RF images. This map is subsequently used
to generate simulated images at several angles (see Fig. 7(a)),
which are compared to expected or known (ground truth)
images at such angles. For evaluation, we present qualitative
and quantitative results from a computer-generated phantom,
a gelatin phantom, and clinical ultrasound images.
Image error metrics. For quantitative evaluation of the simu-
lation results in Tab I, II, III, three global features, denoted as
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I, SNR, CNR, and one local and one histogram feature, denoted
as MAE and χ2-histogram distances, are used to compare the
simulated and ground truth B-mode (envelope) images.

The mean image intensity I is computed as I= 1
n

∑
j=1..n sj

from envelope image intensities sj . Signal-to-noise ratio
is computed as SNR=µ

σ . This, according to theory [28],
should be close to 1.91 for Rayleigh-distributed ultra-
sound speckles. Contrast-to-noise ratio is computed as
CNR=|µs1−µs2 |/(σs1+σs2), where s1 and s2 denote inten-
sity values of two contrasting ultrasound tissues, e.g., intensity
values in the inclusion and the surrounding tissue in Fig. 7,
respectively. We present the normalized error in global metrics
SNR and CNR as a percentage, computed as 100|Fs/Ft−1|,
where Ft (Fs) is the ground truth (simulated) metric value.
For instance, for an average intensity It=80 in the ground
truth image, and Is=60 in the simulated image (which ac-
cordingly looks darker), this normalized metric would yield
100|60/80−1|=25% error. A perfect fit then has 0% error,
while under- and over-estimation both yield positive values.

As a local metric, the mean absolute error
MAE= 1

n

∑
j=1..n |sj − tj | is used, where sj (tj) are

the intensity values of the simulated (ground truth) image.
To isolate local differences from global intensity difference
(which can arguably be compensated by a global brightness
equalization), prior to MAE the compared images are
brightness-normalized by shifting their mean intensity I to
100. A value near 50% points to a marginal local correlation
between the two images.

The last metric is the commonly used χ2 distance between
the intensity histograms of ground truth and simulated images.

Another popular texture metric SSIM [41] was considered
but not used in this work, since we found in a recent study [24]
that SSIM performs poorly for quantifying perceived similarity
between ultrasound image patches for evaluating simulations.
Field II simulations. Fig. 7(b) illustrates the results of our
method for rotated views of a 8×8mm box-shaped numerical
phantom with a spherical inclusion, placed 10 mm away from
the transducer. Field II was used for simulation using 9K
scatterers and a speed of sound of 1540 m/s. We simulated
a 6.0MHz linear transducer with a sampling frequency of
40.0MHz, a dynamic receive focus and a single transmit focus
at 10mm, which allows us to study both in- (top) and out-of-
focus (bottom) image regions. The transducer width was set to
30 mm assuming 192 RF lines, in order for all steered images
to capture the complete phantom. The resulting images were
then cropped to the region of interest containing the phantom.

The top and the middle rows show the simulation re-
sults for the scatterer maps generated with ScatRec1 and
ScatRec7±30◦, respectively, from three viewing angles. The
last row of images show Field II-simulated observations for the
same three viewing angles, which constitute the ground truth.
For ScatRec1, the speckle appearance changes significantly,
proportionally to the rotation angle. In particular, note that
for a 30◦ rotation the contrast of the inclusion to surround-
ing tissue becomes very low – almost indistinguishable. For
ScatRec7, the speckle appearance stays visually closer to
the ground truth in terms of speckle appearance. While the
individual speckles may differ for a 30◦ rotation (difference

ScatRec

FieldII phantom scatterer map0

1

(a) Experimental setup

(b) Simulation results

Fig. 7. (a) Setup of a Field II experiment for transducer rotations around a
simulated phantom. (b) Our method compared to the ground truth for sample
rotated views from the Field II experiment (differences shown in close-ups).

images shown in the insets), properties of the ground truth
images are preserved. The benefits of using 7 images for
reconstruction instead of a single image is also highlighted
by the difference images shown in the insets.

Tab. I compares a selection of metrics from the above-
mentioned simulations shown in Fig. 7, using the same ro-
tation angles 0◦/15◦/30◦. For SNR we evaluated the tissue
surrounding the inclusion. The metrics for ScatRec7±30◦ are
seen to be closer to the ground truth than ScatRec1 for the

TABLE I
ERROR METRIC COMPARISON FOR ROTATED IMAGES SHOWN IN FIG. 7
WITH 1 OR 7 INPUT IMAGES. FOR SCATREC1, THE ERROR INCREASES

QUICKLY FOR ROTATED VIEWS BECAUSE THE SOLUTION IS ONLY VALID
FOR THE INPUT VIEW. SCATREC7 AVOIDS THIS PROBLEM BY OPTIMIZING

OVER RANGE OF INPUT ANGLES.

Metric I (%) SNR (%) CNR (%) MAE (%) χ2 [×10−3]
ScatRec 0◦ 15◦ 30◦ 0◦ 15◦ 30◦ 0◦ 15◦ 30◦ 0◦ 15◦ 30◦ 0◦ 15◦ 30◦
1±00 1.4 36.7 65.6 0.2 10.4 15.2 1.0 7.0 40.8 4.5 29.8 41.4 0.2 1.6 8.0
7±30 1.6 1.6 0.9 1.3 1.3 2.8 1.6 1.3 2.2 7.3 17.4 29.1 0.9 0.2 0.5
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Fig. 8. Deviations from ground truth (GT) for ScatRecN±M◦ (SR) simu-
lations of a Field II-simulated phantom with respect to rotation angle (i.e.,
values deviating from 0 indicate worse fit). Top row: fluctuations from mean
intensity with respect to GT for ScatRecN±M◦ in [−1..1], varying M for
fixed N and vice versa. Bottom row: Deviations from GT for other used
metrics, using ScatRec3/5/7 with 10◦ separation between steering angles.

rotated views at 15◦ and 30◦. For the original 0◦ angle,
since ScatRec1 overfits its reconstruction to that one angle,
it gives lower errors, which however quickly degrades and
cannot generalize to the multi-view problem. ScatRec7±30◦

still performs comparably and well at 0◦ angle. This indicates
that the multi-view optimization is not negatively influenced by
the additional information and the potential noise in steered
images, while improving the reconstructions even at unseen
(un-trained) angles, such as 15◦ missing in ScatRec7±30◦

input. CNR is highly relevant in a training simulator, since a
different CNR (potentially the difference between a pathology
being detected or missed) could compromise simulator fidelity
or worse lead to a false training of the user.

In Fig. 8 we investigate the reconstruction errors of
the Field II phantom for rotations with 1◦ increments. In
Fig. 8(top) the deviation of mean intensity I from the ground
truth is shown for different versions of ScatRecN±M◦. To co-
locate all metrics in one plot, we normalized them all to a scale
[−1, ..,+1], i.e. displaying Is/It−1. As expected, near 0◦ the
mean intensity is close to the ground truth for all combinations
of N and ±M◦, but typically increases proportionally to the
rotation angle. In general, having optimized for an angular
span ±M◦, the mean intensity error degrades relatively slowly
until that rotation angle, and more substantially for over M◦

(due to the lack of observations outside that range). For
large ±M◦, increasing the number of intermediate views with
higher signal-to-noise ratio reduces deviations from the ground
truth as well as brightness fluctuations around the baseline
between rotation angle 0◦ and 30◦. This is summarized in
the top right plot of Fig. 8. In the bottom row of Fig. 8,
we show various error metrics based on increasing N for
a fixed 10◦ increment between the N consecutive steering
angles. For these experiments we see a behavior similar to
that before; i.e., small N and ±M◦ can achieve an excellent
fit for small rotation angles. For rotation angles >M◦, however,
the reconstruction error increases significantly and needs to be
fixed by adding more observations. ScatRec7±30◦ has a low
reconstruction error over all rotation angles, and exhibits minor
fluctuations in reconstruction quality for the chosen metrics.

In Tab. II, some illustrative metrics are tabulated for a
detailed quantitative evaluation of the Field II phantom in
Fig. 7, using a dense set of rotation simulations and recon-
structions. We evaluate reconstructions for simulations with
sample rotations at every 1◦ from 0◦ to 30◦. The results
presented in the table are average metrics over all 31 rotation
angles. We use a selection of 3 metrics (I, MAE, CNR) to
assess quality dependence of ScatRecN±M on the number
of input images N and the angular span M , as well as on
the step size between consecutive steering angles. Clearly,
ScatRec instances using multiple images perform better than
ScatRec1 in almost all cases. An important conclusion from
Tab. II is that increasing the angular range M in general
produces a better fit over the whole range of rotations, up to
a limit of angular separation between input images. This can
be seen best in the 4th column of each metric (best N), which
shows the best result among ScatRec3/5/7 for a particular M .
For too large angular separation between input images, most
notably for ScatRec3±30◦, the similarity with the ground truth
decreases quickly. This fact can be explained by the decreased
signal-to-noise ration for large steering angles, which are 2 of
the 3 input images herein. By increasing the number N of
input images from 3 to 5 or 7, better results can be achieved
even for a large ±M◦. This behaviour can be most clearly
observed for mean intensity I .

In summary of Field II phantom results, increasing the num-
ber of the input images N and the range ±M◦ both achieves
smaller error to the ground truth; This is further highlighted by
showing the overall smallest (largest) deviation in row/column
best N/M of Tab. II in blue (red). From the given set of config-
urations, we would hence recommend to use ScatRec7±25◦

or ±30◦ for best quality, where error metrics are the lowest.
Theoretically, the optimal separation between individual steer-
ing angles is connected to the maximum decorrelation between
steered PSFs, depending on center frequency and many other
variables that are not easily quantifiable. The results indicate
that an optimal separation empirically lies between 7–10◦. As
a tradeoff, however, increasing N requires longer computation
times, with average running times for scatterer reconstruction
of 23 / 70 / 117 / 165 min for ScatRec1 / 3 / 5 / 7, respectively.

To test the dependence of simulation results on the accuracy
of PSF estimation, we shifted the focus depth in the Field II
used as input to our method from 10 mm to 10.7 mm (by

TABLE II
SPECKLE FEATURE COMPARISON FOR CONTINUOUS ROTATION FROM
0◦ ..30◦ USING THE SETUP SHOWN IN FIG. 7. IT IS SEEN THAT, FOR

ACHIEVING A LOW AVERAGE ERROR, IT IS IMPORTANT TO INCREASE BOTH
THE NUMBER OF INPUT OBSERVATIONS N AND THE ANGULAR RANGE M .

Metric I (%) MAE (%) CNR (%)
ScatRec 3 5 7 best N 3 5 7 best N 3 5 7 best N
±05◦ 27.3 27.7 27.3 27.3 22.4 22.8 23.1 22.4 12.8 18.5 30.9 12.8
±10◦ 21.7 21.7 21.8 21.7 21.0 20.6 20.7 20.6 5.4 6.8 10.9 5.4
±15◦ 15.9 16.3 16.9 15.9 20.1 19.8 19.6 19.6 5.9 3.3 5.1 3.3
±20◦ 8.0 9.4 10.6 8.0 19.8 18.8 19.3 18.8 3.9 3.0 3.5 3.0
±25◦ 8.5 4.6 4.1 4.1 20.3 19.6 18.3 18.3 3.5 2.6 2.2 2.2
±30◦ 18.3 5.6 2.3 2.3 27.5 19.5 18.6 18.6 8.6 2.0 2.2 2.0
best M 8.0 4.6 2.3 19.8 18.8 18.3 3.5 2.0 2.2
ScatRec1 34.2 26.2 15.1
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approximately a PSF kernel footprint) in the axial direction.
This slightly diminished the similarity to the ground truth, e.g.,
the best match error for I in Tab. II increases from 2.0% to
4.4%, and the best match error for MAE increases slightly from
18.3% to 20.9%. This demonstrates some relative robustness,
but also indicates the need and importance of estimating a
good PSF that is required as an input to our method.
Gelatin phantom. We next demonstrate results using phan-
toms from actual ultrasound scans. We used a SonixTouch
(Ultrasonix, Richmond, BC) machine with L12-5 linear trans-
ducer, placed over a gelatin phantom with cellulose as scat-
tering media. In these experiments, the PSF was estimated
from the input images [21]. The images were collected using
a multi-static imaging sequence with full-aperture reception
using SonixDAQ. From this rich data collection, any electron-
ically steered focused-transmit could then be reproduced in
a post-processing step using synthetic aperture beamforming.
ScatRec3 in Fig. 9(a) uses 3 observations of the gelatin phan-
tom and the estimated steered PSFs (mid-row) to simulate the
input observations from the reconstructed scatterer map. The
results in the bottom row of Fig. 9(a) are in excellent visual
agreement with the log-compressed B-mode input images.
Fig. 9(b) shows simulations of rotated views of the phantom,
to demonstrate the superiority of ScatRec3±10◦ with respect
to ScatRec1 for envelope images. Similarly to the Field II
experiments, it is seen that ScatRec1 can reproduce the tissue
with excellent agreement, but only when considering the
exact same view-point. When images from different view-
points are required, ScatRec3±10◦ is superior, even after
exceeding 10◦ of rotation. The main visual difference to the
input is the subdued specular reflection from the (isoechoic)
spherical inclusion. Said reflection violates the assumption of
purely diffuse scattering and thus cannot be represented in the
scatterer space consistently over a range of viewing angles.

Rayleigh statistics is a common measure to quantify ultra-
sound speckle, which we aim to model and simulate; hence is
presented next as a comparative evaluation. Fig. 9(c) depicts
the histogram of the 0◦ (envelope) input image and compares
it to the histograms of the envelope images from ScatRec1
and ScatRec3±10◦, after rotating the reconstructed scatterer
maps by 30◦. The histogram for ScatRec3±10◦ is in better
agreement with the histogram of the original image compared
to ScatRec1, and close to an ideal Rayleigh distribution. The
patches of the envelope images used for measuring the speckle
statistics are shown below the histograms.
In vivo experiment. In Fig. 10, we show our results from
the ultrasound examination of the breast, with the hypoechoic
inclusion indicating a cyst. The images were collected using
the same Ultrasonix system above for the phantom experi-
ments, with data acquired with a multi-static sequence. Steered
images with 5◦ increments within a ±30◦range were then gen-
erated using synthetic aperture beamforming. We computed
scatterer maps using ScatRec1 and ScatRec7±30◦, using only
the steered images at 0◦, ±10◦, ±20◦, and ±30◦m as input.
We then simulated steered images at all 13 angles {-30, -
25, ..,+30} using convolution-based simulation from scatterers
reconstructed with ScatRec1 and ScatRec7. This experiment
hence constitutes a test of how well our algorithm optimizes

images both at the given input angles and also at in-between
angles that were not used in optimization, namely ±5◦, ±15◦,
±25◦. Some acquired and simulated images as well as their
differences are shown in the figure. It shows that ScatRec7
resembles the ground truth for all steering angles, whereas
ScatRec1 produces images different from the ground truth at
increasing angles. Images with ScatRec1 appear rather like a
simple cropping from the 0◦image, since the additional angles
are not taken into account.

In Tab. III, these results are corroborated by a quantitative
evaluation on the enveloped images. The angles that were
used as input for ScatRec7±30◦are shown in bold. ScatRec7
performs substantially better than ScatRec1 for angles ≥15◦,
and stays relatively close to the ground truth for both the
input angles and in-between angles. As expected, the most
significant deviations from the ground truth for ScatRec7 are
reported based on local per-pixel comparison MAE. This is
nevertheless not an issue for the purpose of training simulation,
which is not about individual speckles but about perceived
tissue appearance.
Use scenarios: Imaging parameters and Scene editing.
Fig. 11 demonstrates the performance of our algorithm for a
single observation of a liver in vivo using a convex abdominal
probe. In Fig. 11(a) B-mode visualization of the input image
(a) and the acquired scatterer map (b) are shown, downsampled
to 0.5% of the original scatterers for the purpose of visual-
ization. Deconvolution was performed in the polar coordinate
frame of the original RF lines before scan converting into
the Cartesian domain; demonstrating the use of the introduced
techniques for convex transducers. In Figure 11(c), a B-mode
image is simulated from the scatterer map at the same 4.5MHz
as the input image, showing a simulated image visually very
similar to the original one. The difference map goes to
±10% of the maximum image brightness, with a negligible
average. Alternatively, we use 2.0MHz center-frequency for
simulation, which produces a different speckle appearance,
with small features – less resolved as expected (Figure 11(d)).
One can also easily change the transmit focus depth or other
beamforming parameters in simulation time.

Another novel use of scene editing in the scatterer domain is
shown in Fig. 12. In Fig. 12(a) we show content “copy-paste”
in the scatterer domain, where a vessel is “transplanted” to
another location. Note in the blown-out image (c) that the
transferred patch smoothly blends into the surrounding tissue,

TABLE III
ERROR METRIC COMPARISON FOR ROTATED IMAGES SHOWN IN FIG. 10
WITH 1 OR 7 INPUT IMAGES. FOR SCATREC1, IN VIVO RESULTS AGAIN

DEMONSTRATE THE REDUCED QUALITY OF ROTATED ANGLES. SCATREC7
AVOIDS THIS PROBLEM BY OPTIMIZING OVER RANGE OF INPUT ANGLES.

Method Metric 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦
ScatRec1±00◦ I (%) 6.4 0.1 21.9 30.6 44.1 47.8 57.8
ScatRec7±30◦ I (%) 3.7 5.8 12.3 6.5 5.2 6.3 10.9
ScatRec1±00◦ SNR (%) 3.2 1.9 21.1 25.8 37.3 38.0 51.5
ScatRec7±30◦ SNR (%) 4.6 2.4 18.3 14.4 9.9 4.5 14.5
ScatRec1±00◦ MAE (%) 7.0 19.0 26.5 36.2 49.0 57.8 64.5
ScatRec7±30◦ MAE (%) 6.4 17.5 16.6 18.3 18.2 25.3 34.8
ScatRec1±00◦ χ2 [×10−3] 2.5 4.6 9.6 33.6 38.1 28.4 29.0
ScatRec7±30◦ χ2 [×10−3] 4.5 12.7 19.1 6.4 14.6 3.8 12.2
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(a) Reconstruction (b) Envelope images in rotated views (c) Histograms of shown patches

Fig. 9. (a) Reconstruction of input images for gelatin phantom, using PSF estimated from said images, (b) ScatRec1 vs. ScatRec3±10◦, (c) Rayleigh statistics.

Fig. 10. Comparison of simulation results using ScatRec1 or ScatRec7±30◦, respectively, to in vivo scans of cyst in female breast (Ground truth), which were
obtained using beam steering. Only steered images for 0◦, 10◦, 30◦ were used as input for ScatRec7±30◦, whereas images for in-between angles of 5◦,
15◦, 25◦ are generated as novel views. The difference colormaps range from green (0) to red (±100%), highlighting the better accuracy of ScatRec7±30◦.

while the editing in the B-mode domain is observed to create
disturbing seams/artifacts. In Fig. 12(b), the distortion caused
on the skin by the pressure from a convex probe is undone
in the scatterer domain in order to simulate linear transducer
imaging at yet another imaging frequency of 6.6MHz. Com-
pared to B-mode editing, the speckle pattern would be affected
minimally by distortion using our method, because the editing
is performed prior to convolution.

Scene statistics. Tab. IV tabulates the important settings
in different experiments: transducer center frequency (CF),
sampling frequency (SF), transducer type (Type), transducer
field-of-view (FOV), RF image resolution (Rrf ), scatterer map
resolution (Rsc), proportion (k) between lateral speckle vs.
scatterer resolution, number of input observations (#N), and
used domain decomposition grid (DDG). Lateral scatterer
resolution is a multiple k of RF line number, where k is
computed as b∆l/∆ac, as described in Sec. III-B. For datasets

Phantom and Breast, the size of a scatterer image is enlarged
laterally by adding left and right borders of 7 mm each, to
be able to contain all the steered images within a scatterer
map as discussed in Sec. III-A. Besides the three varying
parameters listed in Tab. IV, i.e. k, #N, and DDG, 4 other
constant parameters were used for all scenarios: regularization
factor λ=0.005, confidence parameter βmax=60◦, and the
decomposition border margins bl=160 pixels and ba=70 pixels.

We experimented with varying the value of k. For example,
we used a value of k=3 for ScatRec3±M◦, which is the critical
point where Ax=b is no longer underconstrained. For the
Field II phantom in Tab. II and ScatRec3±M◦, CNR error to
the ground truth increased to 26.5% (±5◦), 16.7% (±10◦),
9.7% (±15◦), 4.2% (±20◦), 6.2% (±25◦), 10.1% (±30◦),
which constitutes an increase by 13.7%, 11.3%, 3.8%, 0.4%,
2.8%, 1.5% w.r.t. the setting k=8.

Parameters. In the remaining result section we investigate
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(a) Original B-mode (b) Scatterer map

(c) Simulated B-mode (d) Simulated (2 MHz)

Fig. 11. Using an in vivo observation of a liver, the scatterer map (b) is
computed from the input image (a), and can be forward-simulated using the
original transducer frequency (c) or a different frequency (d), hence allowing
rapid creation of novel images with varying parameters.

(a) Content transfer (scat. space)

linear 
probe

imaging

warp
scatterer map

(b) Linear probe imaging

(c) Content transfer zoom: scatterer (left) vs B-mode space (right)

Fig. 12. Scene manipulation in scatterer space. (a) Cropping and pasting
content seamlessly to another place, shown in close-up (c), left. Note the
seams in B-mode content transfer (c), right. We can undo the distortion of
the original scatterer map to simulate a typical linear probe image (b).

the influence of some parameters and optimization choices, in
particular the norms for the chosen objective, λopt, and the
confidence weights ci, on the performance of ScatRecN±M ,
by using the phantom in Fig. 7. Example plots from these
experiments are given in Fig. 13.

Using ScatRec3±10◦ as example, we first analyze the
influence of varying the regularization constant λopt, from
values 0.01, 0.005 (used for the paper), to 0.001 (=less
regularization). Using contrast-to-noise ratio (CNR) error as
an example, it can be shown that for higher regularization
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Fig. 13. (a) A sufficiently large regularization constant λ is important for
many-angle reconstruction. (b) In our tests, RLAD has been shown to produce
marginally lower error values than LASSO with it’s mixed `2`1 norms. (c)
Allowing linear falloff of confidence with respect to steering angles reduces
image errors.

values λopt=0.01 and λopt=0.005, CNR stays relatively low
with an average over 7 rotation angles of 4.96 / 5.59%. For
λopt = 0.001, the CNR error increases significantly (36.70%).
More specifically, as shown in Fig. 13(a) the error stays low
for angles ≤M (0%, 4.58%, 0.60%) and increases rapidly for
angles >M , showing that this constitutes insufficient regular-
ization. A known problem of regularization methods is that the
solution to the original problem is underestimated, leading to
an average error in intensity values I of 14.05 / 21.87 / 23.49
for λopt=0.01 / 0.005 / 0.001. Thus, we chose λopt=0.005 be-
cause it is a good compromise with just enough regularization.

Using ScatRec3±10◦, we compare the performance of the
used RLAD (i.e., an `1`1 objective) with the more common
LASSO (i.e., an `2`1 objective). When averaging over 7
simulated angles as in the previous experiment, we obtained
errors for RLAD / LASSO with the default λ=0.005, as
I=21.87 / 22.62%, SNR=3.95 / 4.38%, MAE=20.88 / 21.19%,
χ2=0.018 / 0.022, CNR=5.58 / 6.85%, indicating a slightly
but consistently lower error of RLAD compared to LASSO.
Fig. 13(b) shows that LASSO performs significantly worse
for transducer rotation angles ≥ 20◦. We reached the same
conclusions after repeating this experiment for another reg-
ularization parameter λ=0.01, in which case again RLAD
performed consistently better than LASSO for all metricss.

As shown in Fig. 13(c), we investigated the influence of
using confidence weights ci, with respect to the steering angles
βi on the accuracy of our results, using ScatRec5±30◦ on the
phantom in Fig. 7, comparing βmax=∞ and βmax=60◦. As a
representative example, we measure the metric errors averaged
over 7 simulated rotation angles with 5◦separation from 0◦to
30◦, for βmax=60◦/ βmax=∞, leading to I=5.49 / 9.02%,
SNR=4.18 / 5.54%, MAE=19.43 / 22.00%, χ2=0.009 / 0.014,
CNR=2.14 / 3.37%, indicating the advantage of the βmax
parameter used. Similarly, individual metric values for each
rotation angle were seen to be consistently better when using
varying confidence weights ci (depicted in Fig. 13(c) for a

TABLE IV
SCENE STATISTICS

Input CF/SF Type FOV Rrf Rsc k #N DDG
Field II 6.0/40MHz Lin. 9mm 64×448 504×448 8 7 2×4
Phantom 6.6/40MHz Lin. 38mm 128×1800 2520×1800 14 3 5×9
Breast 6.6/40MHz Lin. 38mm 128×2000 2520×2000 14 7 5×9
Liver 4.5/20MHz Conv. 75◦ 192×3136 1920×3136 10 1 4×16
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sample metric). Overall, varying weights constitute a clear
improvement as compared to constant ci with βmax=∞.
Hence we conclude that reducing the influence of extreme
steering angles to account for a deteriorating SNR and errors
in assumptions (e.g., PSF rotation) is justified.

We next investigate the memory consumption of our sparse
matrices with respect to N and the used domain decompo-
sition. For ScatRec1 partitioned into 4×2 domains (4 ax-
ial, 2 lateral partitions), a single convolution matrix A is
a 10296×82368 sparse matrix with a memory footprint of
550 MB. As expected, for ScatRecN, the size of the matrix
and the memory consumption increases roughly by a factor of
N (e.g., 1550 MB for ScatRec3). Using ScatRec3 with 4×1
domains, the memory footprint already grows to 2845 MB.
Note that for the full 3D scatterer reconstruction problem, it is
expected that the sparsity of both A and resulting scatterers x
increases by a significant amount compared to the 2D problem.

Since optimization algorithms are typically of polynomial
complexity, a partitioning into smaller solutions can theoreti-
cally speed up computations. We evaluated the times needed to
compute a scatterer solution with respect to two different do-
main decompositions for varying N . For 4×2 / 4×1 partitions,
we obtain for N=1: 53 / 45 min, N=3: 125 / 138 min, N=5:
158 / 151 min. Hence we conclude that the render times are
roughly comparable, and that in our experiments the overhead
of more overlaps on the borders and the repeated allocations
of sparse matrices roughly balance out a theoretical advantage
of many smaller solutions regarding algorithmic complexity.

V. DISCUSSION AND LIMITATIONS

In this work, we reconstruct the scatterer map of entire US
images in RF space, and use the reconstructed maps directly
for simulation. RF space allows us to retain phase information
about constructive and destructive interference effects between
nearby scatterers, as opposed to solving the problem in the
demodulated signal space [20], i.e. after envelope detection.
Also, this method faithfully captures small non-statistical
variations in the scatterer map, which are prevalent in real
tissue and important for the realism of the simulation. From
the reconstructed maps, a homogeneous US image patch can
be used to estimate a parametrized scatterer model of the
underlying tissue [20]. The resulting parametrization can then
be used to instantiate scatterer maps for new structures of
the same tissue, inpaint larger models, and generate arbitrary
geometrical scenes from a tissue library.

We investigated ScatRec for up to 7 images in the evalu-
ation, since our experiments suggest that beyond 7 images,
the gain in quality is minor as compared to the increase in
computation time. 7 images are still small enough for efficient
inverse-problem computation, and the rapid acquisition of 7
electronically beam-steered images is conceivable well under
a second where large motion is minimal. Any such motion
indeed exists in the two in vivo datasets, where the results
are still consistent with simulations and expectations. Note
that we aim for offline processing, whereas the resulting
scatterer maps can be later used in real-time simulations. We
envision scatterer reconstruction to be performed only once for

a dataset, and the resulting scatterers to be fed into an online
simulator, e.g. [23], using the forward pipeline.

As an example of computation time, the scatterer recon-
struction for the dataset Breast in Fig. 10 took 193 min for
ScatRec1 and approximately 1315 min (≈ 22 h) for ScatRec7,
respectively. The computation time for multiple views is jus-
tified by robustness of the speckle appearance with respect to
varying view parameters, which we show in many examples. In
this work, image simulation (forward-problem) computations
were in the range of seconds to minutes, using an unoptimized
Matlab implementation; e.g., 51 s for Fig. 7. Nevertheless, it
is possible to conduct simulations in milliseconds by using
scatterers extracted herein as input to dedicated GPU-based
simulations, e.g. [6], [23], for generating images interactively.

Reflections from large-scale structures and other directional
artifacts appearing in the input images, including ultrasound
shadowing effects due to absorption and reflections, are cur-
rently not handled separately in our implementation and hence
may be treated incorrectly as a property of the tissue itself. We
believe that using `1 regularization already helps to suppress
some of these directional artifacts, since strong reflections
appearing in only a subset of the input images are treated
as outliers. Ideally, however, we would identify the diffusely
scattering parts (e.g., using Rayleigh fitting) and use only
those for scatterer reconstruction, while modeling directional
ultrasound interactions via other methods, such as GPU-based
raytracing techniques [6], [23].

Attenuation is modeled and compensated by a time-gain
compensation step, prior to using the ultrasound RF signal
in the ScatRec inverse-problem. We herein did not take local
attenuation changes into account, but it is conceivable to use
more refined models in the future to estimate local attenuation,
similarly to [16]. Sound-speed is currently assumed to be
constant in our implementation, ignoring aberrations as well
different wave-paths in the tissue [33]. Sound-speed changes
can also potentially be acquired [31] and simulated as a
parameter in raytracing techniques [23].

A logical step forward is to extend our method to acquire
3D scatterer volumes. This may require a novel approach for
reducing algorithmic complexity and the memory footprint.
It is, for example, conceivable to exploit the fact that our
deconvolution matrix is approximately block-circulant, as for
block-circulant matrices it is possible to efficiently use fast
Fourier transform for solving the inverse problem [12]. To
account for the varying PSF, a similar partitioning of the
domain into sections of locally constant PSFs could be used.

In related work, we investigated alternative uses of ultra-
sound simulation of novel content other than training simu-
lation. As recent examples, simulated images have been used
for the validation of ultrasound image-analysis methods [29],
[34], [35]. The proposed method can be used to produce
such realistic content. Due to interactive frame rates of mod-
ern simulation methods it is also conceivable to use them
in example-based learning, by rapidly generating ultrasound
images from varying input parameters. Furthermore, scatterer
maps may have potential diagnostic value for the detection
of pathologies, due to changes in tissue composition during
pathological processes.
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VI. CONCLUSIONS

We have presented a novel technique to reconstruct a
scatterer representation of the tissue. In ultrasound simulations,
these scatterer maps can be used to create realistic images of
tissue under varying viewing angles and transducer profiles.
Scatterers also represent the tissue in a different space, where
scene editing operations such as copying, adding, distorting
the anatomy can be performed easily without image artifacts.
With electronic beam steering, we acquire a sufficient number
of input images for a solution robust in simulations; without
any need for a mechanical setup or measuring frame. Results
from numerical and physical phantoms as well as in vivo
images have been presented, for both convex and linear probes.
We have presented both qualitative and quantitative results,
demonstrating the value of our method.
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