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Abstract— Patient-specific models in medical procedures are
often limited to a relatively small region of interest due either
to computational concerns or to the fact that only a part of
anatomy could be observed in the input medical images. Thus,
for deformable planning or training simulations, boundary
conditions at the borders of such models are necessitated.
Zero-displacement or -force constraints at outer boundaries
are commonly used, with the assumption that the selected
region is large enough to minimize effects on the deformable
behavior inside the region of interest. This may, however, still
result in errors and does require superfluous elements to extend
models. In this work, a mixed boundary condition type, called
compliance boundary condition, is proposed to constrain model
boundaries. Different techniques to define and estimate these
boundary constraints are studied with simulation experiments.
Results are presented for palpation on 2D and 3D phantoms
and needle insertion to a male pelvic anatomical model.

I. INTRODUCTION

Medical simulations are essential for planning and training
of interventions. For an accurate simulation, patient-specific
models are necessitated. For deformation simulation, these
models consist of a spatial map of one or more deformation
parameters in or near the anatomical region of interest,
based on which one can compute the deformable tissue
reaction together with an interaction model [7], [11]. Finite
Element Method (FEM) is a popular continuum-mechanics
based technique, in which the region is discretized into
simple geometric elements. Together with their deformable
parametrization (e.g. Young’s or elastic modulus) and fixa-
tion in space (through boundary constraints), one can then
compute the deformable response of the model by solving
partial differential equations. Other popular models use mass-
spring and finite difference methods.

Patient-specific deformable models involve a combination
of a geometric model, its parametrization, and boundary con-
straints. Geometric models are generally in the form triangu-
lated surfaces separating different presumably-homogeneous
anatomical regions, often delineated from medical images
such as CT or MRI, e.g. [10]. Then, typically empirical
deformable parameters from the literature are assigned in
those regions. An imaging technique, called elastography,
can enable the estimation of local deformable parameters [9],
[2], which may be used to parameterize patient-specific de-
formation models. Despite numerous works in the literature
on recovering geometry and/or spatial parametrization of
deformable tissue, there is little to no work on defining
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accurate boundary constraints. This is despite the well-
known fact that boundary conditions often play a much
larger role in the deformation outcome than discretization
parametrizations [14], [12]. In this work, a novel model for
parameterized boundary conditions is proposed, which can
be represented naturally in the standard FEM framework
(embedded in the stiffness matrix formulations), and methods
to estimate such boundary conditions are introduced.

For deformable models, skeletal system is often considered
as a fixed boundary condition, as been grounded to the
patient table. For instance, during breast biopsy, the rib-
cage can be taken as a fixed wall [8]; or for the prostate,
the pelvic bone is considered fixed [11]. Patient-specific
models used in medical simulations often do not cover the
extent of the entire body, but instead focus on a smaller
region-of-interest (ROI), due mainly to the limited field-of-
view of image acquisition systems or due to computational
constraints. Therefore, the ideal case is when such ROI
is severed from the rest of the body by some anatomical
boundary that is within the ROI; e.g., by just imaging the
breast and the rib cage, one can ignore the rest of the
body. However, for abdominal anatomy, this is often not
the case, and all organs interact at some level with each
other, i.e. breathing from the diaphragm can be visible in
the prostate region. Consequently, when a small ROI is taken
around an abdominal organ, its interaction with the rest of
the abdomen and thorax cannot be ignored. Nevertheless,
to the best of the authors’ knowledge, most simulations to
date ignore such interaction, and simply employ a zero-
displacement (as if the ROI is “glued” within a box or
sphere) or a zero-force (as if the borders of the ROI are
the skin in the air) boundary constraints [1], [11]. Some
studies first pad the actual ROI with superfluous tissue
(FEM elements) in order to dissipate the effects of zero-
displacement or -force constraints at the outer boundaries
[6], [13]. Nevertheless, how far and with which tissue to
pad are outstanding questions, with no guarantees on this
representing the real deformations, let alone the additional
computational burden brought by the extended model.

In this work, we introduce a novel formulation of boundary
constraints in a way that can be naturally represented and
solved in the standard FEM framework. We also present
techniques to parametrize such boundary conditions experi-
mentally from observed tissue displacements, which can be
acquired using medical imaging, e.g. MRI and ultrasound.
For the purpose of this paper, we simulate such observations
from known ground-truth models of larger anatomy.

Note that, compliance boundary conditions are indeed



a generalization of the boundary conditions introduced in
[5], in which springs of empirically-set stiffness and infinite
length are attached to boundary nodes in order to couple
separate models. Here, we propose an approach to have
more complex boundary conditions as well as experimentally
parametrize those by exploiting observed deformations.

II. METHODS

Considering a linearly-elastic ROI discretized by N mesh
nodes into FE, the relation between the nodal elastic forces f
and the nodal displacements u of this model is characterized
by the FEM through the following linear system: Ku = f,
where K is the stiffness matrix dependent on the geometry
and biomechanical properties of the elements. In order to
set up our problem formally, below we will first consider
that a deformable model of the entire anatomical extent
exists and is given to us. Based on this, we will first show
its relation to a limited-ROI stiffness-matrix K, and then
introduce different approximation models to such relation.
We then present methods to parametrize such models, while
considering experimental limitations, e.g. observation noise.

A. Relation to a Full Anatomical Model

Let us first consider that a full model of the entire
anatomy is known (given). Although this in fact will never
be the case in reality, it will still help us below to define a
formal relation of such full model Kf to the ROI boundary
conditions. Consider the deformable full FEM model with
nodes reordered such that observed nodes in the ROI come
first and unobserved nodes follow next, i.e.:

Kfuf =

[
Koo Kou
Kuo Kuu

][
uo
uu

]
=

[
fo
fu

]
= ff. (1)

From fu = Kuouo +Kuuuu , it follows that:

uu = K−1
uu (fu−Kuouo) (2)

and replacing (2) in (1) and algebraic manipulations yield:

fo−KouK−1
uu fu︸ ︷︷ ︸

f̃o

=
(
Koo−KouK−1

uu Kuo
)︸ ︷︷ ︸

K̃oo

uo, (3)

where K̃oo is the so called condensed stiffness matrix [3]. For
instance, the condensed matrix for the (green) ROI in the 2D
example in Fig. 1(a) looks as in Fig.1(b)(top). This N node
system in (3) indeed models the ROI deformation exactly
as if the entire anatomical model were present. However,
without the geometry and parameters of the full model,
which are not always readily available or observable in
practice, then K̃oo can also not be deduced. Nevertheless,
if one can observe and model the ROI, i.e. K, then we
can try to estimate the incremental difference C between
that and the condensed system, i.e. C = K̃oo−K. For the
2D example in Fig. 1(a), such difference C would look
as in Fig. 1(b)(bottom). Our motivation is that C can be
approximated from few observed deformations. This will
then enable augmenting K to an approximate condensed
system, using which any interaction response can be com-
puted similarly to the response of the unknown full system.

Since C then encodes the effects of boundary conditions
on K that are neither zero-displacement nor zero-force, but
rather compliant (spring-like), we call this augmentation as
compliance boundary constraints.

B. Estimating Compliance Boundaries

Assuming no external force is applied on unobserved
nodes, i.e. fu = 0, then (3) becomes fo = (K+C) uo. Since
the forces on all nodes except the ones that are manipulated
are zero, we can solve this system for such rows, i.e.:(

K′+C′
)

uo = 0 (4)
C′uo = −K′uo, (5)

where prime indicates that the few rows corresponding to
manipulated nodes are removed. Note that C has non-
zero elements only for row/columns corresponding to the
ROI boundary nodes, thus unless a boundary was manip-
ulated, such dropped rows do not lose unknowns from C.
Additionally, for known tissue composition (e.g. patient-
specifically modeled or imaged by elastography) and for
observed displacements uo, the right-hand-side of (5) is
known – represented hereafter with the column vector b.

Since C has several unknowns, but the observations cannot
be arbitrarily many, solving the full C matrix is unrealistic
in practice. Nevertheless, intuitively and as also empirically
observed, many nonzero elements are on the block diagonal
of C, e.g. 49% of the elements in Fig. 1(b) (bottom). For a
block-diagonal approximation (block), each boundary node
in (5) becomes linearly independent, leading for node i to:[

ci,1 ci,3
ci,3 ci,2

][
uo,ix
uo,iy

]
=

[
bi,x
bi,y

]
(6)

For given observations, constraints at boundary nodes can
then be approximated as the solution of the linear system:[

uo,ix uo,iy 0
0 uo,ix uo,iy

]ci,1
ci,2
ci,3

=

[
bi,x
bi,y

]
(7)

solved via pseudo-inverse. As each observation has x and y
components, we need at least two observations (e.g. motion-
tracked palpations) to uniquely solve for block unknowns.

A simpler approximation is just to solve for the diago-
nal elements; e.g. Fig. 1(b)(bottom) has 45% of non-zero
elements on the diagonal. Diagonal elements ci,1 and ci,2
corresponding to each row can be estimated with the above
linear system, where ci,3 is then assumed to be zero. This
indeed corresponds to an axis-aligned compliant (spring)
model as shown in Fig. 1(c). Note that only one observation
is sufficient to reconstruct diag C model in 2D.

III. RESULTS

To study the proposed techniques above, we used a simple
palpation experiment in 2D and 3D numerical phantoms,
as well as a needle insertion example on a male pelvic
anatomical model. We applied palpations and obtained the
deformation of the model from the FEM. In each experiment,
we had the (entire) full FEM model, Mf, within which we



attempted to estimate a reduced model, Mr, in a smaller
ROI. This ROI is selected considering where interactions
are carried out and deformations are of interest, as well as
for feasibility for imaging to get observations, e.g. near the
surface assuming ultrasound acquisition.

In an observation phase, we utilized Mf to mimic the
acquisition of deformation response, e.g., by some imaging
technique. For given interactions we observed the deforma-
tions within the ROI and used those to estimate compliance
boundary conditions as mentioned above. Additionally, Mf
was utilized also for generating ground-truth deformations
such that the results approximated by our models could
be evaluated. Accordingly, for other random interactions
(e.g. the palpation at a different surface location) the nodal
displacements d were calculated from Mf and compared
to the displacements u of the reduced model Mr for that
interaction. The average error is reported as the average at
all nodes in the ROI, by normalizing to the maximum nodal
displacement (often the palpation/interaction magnitude) d0,
i.e. δ =

∑
N
i=1 δi
N·d0

, where δi is the Euclidean distance between
the estimated and ground-truth displacements at node i.

A. Experimental Setup

In 2D, a 140×160 mm full numerical phantom with a
depth of 10 mm was constructed, where a 60×80×10 mm
part is defined as the ROI, as seen in Fig. 1(a). Deformation
was modeled using linear triangular FEM elements. There
were 479 nodes in the full model and 111 nodes in the ROI.
In 3D, a 140×140×160 mm numerical phantom (with 3825
nodes) was constructed with linear tetrahedral elements, with
a 60×60×80 mm surface section (of 41 nodes) being the
ROI. Poisson’s ratio was set to 0.49 and Young’s modulus to
10 kPa. Compressions of 0.3% strain (of full depth) were
applied for observation and evaluation. The full models
were assumed to have zero-displacement constraint at their
bottom surface. Two baseline comparisons for reduced model
were done; first, zero-displacement constraint for bottom
surface in all directions (bottom) and, second, additional
zero-displacement constraints for side surfaces were used
only in the normal direction (all fix).

Male pelvic model was acquired from segmented MR
images. The full model had an extent of 131×185×137 mm,
meshed with 3499 nodes and 16239 tetrahedral elements,
including models of the prostate, bladder, pelvic bone, and
remaining soft tissue as seen in Fig. 2(a). For the reduced

(a) (b) (c)
Fig. 1. In (a) bottom surface of the full model is fixed and top surface of
the reduced model is pushed. The nodes in orange part are unknown and in
green part are observed ROI nodes. In (b) (top) K̃oo and (down) C and in
(c) the compliance boundary conditions for diag approximation is shown.

model, we considered a region from the skin to the prostate,
where the needle interaction and relevant prostate deforma-
tion occur. This yielded 345 nodes and 1197 tetrahedral
elements as seen in Fig. 2(b). Poisson’s ratio was set to 0.49.
Young’s modulus was set to 20 kPa for the prostate, 10 kPa
for the bladder, and 15 kPa for the remaining elements as in
[4]. Nodes on the pelvic bone were set as zero-displacement
constraints for both full and reduced models. Again, two
baseline comparisons for reduced model were performed;
first, zero-displacement constraints for nodes on pelvic bone
(only bone) and, second, zero-displacement constraints on all
surfaces except the skin on inferior side were used (all).

B. Ideal (Noise-free) Observations

First, we studied noise-free observations, ignoring poten-
tial imaging and motion estimation errors in an experimental
setup. We first tested in 2D an ideal scenario, in which
the interaction during the observations will be exactly on
the same location (nodes) as the interactions during the
experiments, called same in the results. Note that in the
linear (Hookean) deformation model that we use, this first
simple example can be simulated without requiring boundary
condition estimation, as the response for interactions on the
same nodes would scale linearly and can simply be estimated
as a linear combination of the observations. Later, we used
a more realistic scenario where the interaction location on
the reduced model is different (not known a-priori), called
diff1 in the results. At some selected surface nodes, several
palpations di = [di,x,di,y]

T were applied corresponding to dif-
ferent observations and evaluations with di,x = d0 cos(πi/M)
and di,y = d sin(πi/M) for a total number of M observations
and evaluations. Table I(A) shows the error for compliance
boundary conditions (CBC) and conventional (empirical)
BC setting, where three observations were used and seven
evaluations were performed. diag is seen to yield best results.

We also studied the effect of the number of linearly-
independent observations on average error. Note that increas-
ing M does not necessarily yield more linearly-independent
observations, as each observation is a linear combination
of M − 1 others. For obtaining linearly-independent ob-
servations, interactions were performed on different node
combinations, called diff2 in the results Table I(A). It is seen
as expected that increasing number of linearly-independent
observations decreases the average error for block more sig-
nificantly than diag, since block is a more expressive model

(a) (b)
Fig. 2. In (a) full model of male pelvic anatomy is shown with soft tissue
(yellow), pelvic bone (gray), bladder (blue) and prostate (red). Bounding
box shows the ROI, also zoomed in (b).



with higher degrees-of-freedom, meanwhile also requiring
more independent observations to estimate robustly.

Next, we tested the noise-free scenario for same, diff1
and diff2 in 3D. Several palpations were applied in spherical
coordinates as ui = [ui,x,ui,y,ui,z]

T , with ui,x = d sinθi cosφi,
ui,y = d sinθi sinφi, and ui,z = d cosθi for θi = (πi/m) and
φi = (πi/n) with mn being the total number of observations.
The average error for m=n=3 are shown in Table I(A) for
3D. As in 2D, diag yields minimal error for same and diff1,
but increasing number of linearly-independent observations
decreases error for block more significantly.

C. Observation Noise

Since displacement observations may be noisy in real
applications, we evaluate the effect of noise in our methods.
We use uniformly-distributed noise with SNR=20, for which
results from an average of 10 different noise experiments are
shown in Table I(A) for 2D and 3D numerical phantoms. For
increased number of linearly-independent noisy observations,
diag yields best results. The effect of increased observations
M on error in noisy 2D experiments is shown in Fig. 3.

D. Male Pelvic Anatomical Model

For the pelvic model, we used three palpation observations
on the skin, and evaluated the accuracy of deformation
estimation for displacements applied on the nodes along the
needle shaft. We assume that the needle is already inside
the model in the stable state, and displacements model the
static friction at a “stuck” interaction state [11]. Interactions
were simulated by distributing the friction force to the tissue
nodes inside a cylindrical region around the shaft with radius
R, which was chosen such that there are 8 nodes along the
shaft, corresponding to a distribution approximately at the
mesh resolution. The external force is distributed to those
nodes inversely-proportional to their distance to the needle
shaft. Table I(B) shows the average error when 4.5 mm
displacement is applied. Since for many applications, such
as biopsy and brachytherapy, the location of needle tip is
important, we also evaluated errors at the tip. Results show
that diag yields two times lower error than conventional
boundary definition approaches at the needle tip.

TABLE I
AVERAGE ERROR IN 2D AND IN 3D WITH AND WITHOUT NOISE.

(A) Average Error conventional CBC
(Phantom) noise-free with noise

bottom all fix diag block diag block

2D
same

19.5 38.9
2.0 2.8 5.4 10.5

diff1 8.6 12.3 11.3 20.2
diff2 5.2 4.6 6.5 12.6

3D
same

13.9 29.5
6.7 7.2 7.4 33.0

diff1 7.3 9.4 23.8 35.1
diff2 5.9 6.5 6.4 15.7

(B) Average Error in % in mm
(Male Pelvis) all nodes needle tip all nodes needle tip

only bone 309.4 349.4 19.2 21.5
all 17.4 31.9 1.1 2.0

diag 15.8 17.8 1.0 1.1
block 25.1 19.1 1.5 1.2
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Fig. 3. Using different number of observations in 2D is evaluated. Left
plot shows average error for same and right plot for diff1. For increasing
M, average error decreases more significantly for block.

IV. CONCLUSIONS AND FUTURE WORK

We presented a novel boundary definition and an
observation-based technique to model that. Our proposed
method CBC can estimate deformations more accurately
than the conventional empirically- or arbitrarily-set boundary
conditions. The diagonal approximation of our method is
seen to be the effective method. Although CBC requires
observations which are not required by conventional ap-
proach, it can yield significantly more accurate deformation
estimations, essential for clinical settings such as biopsy
or brachytherapy simulation. Additionally, in virtual-reality
simulations, more accurate boundaries can be incorporated
without increasing the computation time, including dynamic
or nonlinear models, since the CBC-augmenting a stiffness
matrix does not change its size. Next, observations from
imaging experiments will be used to study CBC.
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