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Abstract. A novel hand-held speed-of-sound (SoS) imaging method is proposed,
which requires only minor hardware extensions to conventional ultrasound (US)
B-mode systems. A hand-held reflector is used as a timing reference for US
signals. A robust reflector-detection algorithm, based on dynamic programming
(DP), achieves unambiguous timing even with 10 dB signal-to-noise ratio in real
tissues, successfully detecting delays<100 ns introduced by SoS heterogeneities.
An Anisotropically-Weighted Total-Variation (AWTV) regularization based on
L1-norm smoothness reconstruction is shown to achieve significant improve-
ments in the delineation of focal lesions. The Contrast-to-noise-ratio (CNR) is
improved from 15 dB to 37 dB, and the axial resolution loss from >300% to
<15%. Experiments with breast-mimicking phantoms and ex-vivo liver samples
showed, for hard hypoechogenic inclusions not visible in B-mode US, a high SoS
contrast (2.6%) with respect to cystic inclusions (0.9%) and the background SoS
noise (0.6%). We also tested our method on a healthy volunteer in a preliminary
in-vivo test. The proposed technique demonstrates potential for low-cost and non-
ionizing screening, as well as for diagnostics in daily clinical routine.

1 Introduction

Breast cancer is a high-prevalence disease affecting 1/8 women in the USA. Current
routine screening consists of X-ray mammography, which, however, shows low sensi-
tivity to malign tumors in dense breasts, for which a large number of false positives
leads to an unnecessary number of breast biopsies. Also, the use of ionizing radiation
advises against a frequent utilization, for instance, to monitor the progress of a tumor.
Finally, the compression of the breast down to a few centimeter may cause patient dis-
comfort. For these reasons, latest recommendations restrict the general use of X-ray
mammography to biennial examinations in women over 50 year old [13].

Ultrasound (US) is a safe, pain-free, and widely available medical imaging modal-
ity, which can complement routine mammographies. Conventional screening breast US
(B-mode), which measures reflectivity and scattering from tissue structures, showed
significantly higher sensitivity combined with mammography (97%) than the latter
alone (74%) [8]. However, B-mode US shows poor specificity. A novel US modality,
Ultrasound Computed-tomography (USCT), aims at mapping other tissue parameters,
such as the speed-of-sound (SoS), which shows a high potential for tumor differenti-
ation (e.g., fibroadenoma, carcinoma, cysts) [2]. However, this method requires dedi-
cated and complex systems consisting of a large number of transducer elements located
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around the breast in order to measure US wave propagation paths along multiple tra-
jectories, from which the SoS-USCT image is reconstructed [3, 5, 10, 11]. Low-cost
extensions of conventional B-mode systems that only require a single multi-element
array transducer are desirable for SoS-USCT for the daily clinical routine. There have
been some early attempts to combine B-mode systems with X-ray mammography, us-
ing the back compression plate as a timing reference. Yet, the reconstruction suffers
from strong limited-angle artifacts, which provide unsatisfactory image quality, unless
detailed prior information of the screened inclusion geometry is available [6, 9].

TransducerReflector

Tissue

Ultrasound waves

Fig. 1. SoS imaging setup.

In this work we propose a novel SoS-USCT
method, hand-held sound-speed imaging, which over-
comes the above listed limitations. By transmitting
US waves through tissue between a B-mode trans-
ducer and a hand-held reflector, a SoS-USCT im-
age of sufficient quality for tumor screening is ob-
tained (Fig. 1). A specific reflector design combined
with dedicated image processing provides unambigu-
ous measurement of US time-of-flight (ToF) between
different transmitter/receiver elements of a transducer,
from which local tissue SoS is derived as an image.
Total-variation regularization overcomes the previously reported limited-angle artifacts
and enables prior-less SoS imaging and precise delineation of piece-wise homogeneous
inclusions. The proposed method only requires a small and localized breast compres-
sion, while allowing for flexible access to arbitrary imaging planes within the breast.

2 Methods

A 128-element 5 MHz linear ultrasound array (L14/5-38) was operated in multistatic
mode (a), each element sequentially firing (Tx) and the rest receiving (Rx). For this
purpose, a custom acquisition sequence was implemented on a research ultrasound ma-
chine (SonixTouch, Ultrasonix, Richmond, Canada). In a first implementation, a con-
ventional ultrasound beamformer is adapted to the application by beamforming only a
single element pair in Tx and Rx at a time, which requires the acquisition of 128× 128
RF lines for 40 mm depth in about 8 s. To keep the measurement scene stable during ac-
quisition, a positioning frame was introduced to keep the orientation of transducer and
reflector fixed with respect to each other (Fig. 5b). For each line, the raw (unmodulated)
ultrasound data (RF lines) are recorded. Computations are then performed in Matlab R©.

2.1 Reflector delineation

The reflector consists of a thin Plexiglas stripe (50mm× 7mm× 5mm), which lim-
its the reflected echoes to the desired imaging plane, and allows for flexible access to
different breast locations. The material choice ensures a coherent wave reflection along
the tested angular range. The flat reflector geometry is simple for manufacture, and easy
to identify in US data. Secondary echoes corresponding to wave reflections between re-
flector boundaries are well-separated from the main echo and filtered out (Fig. 2a-b).
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Fig. 2. Reflector identification for ex-vivo liver test (Fig. 5d). a) Setup details; b) RF lines acquired
with overlapped DP delineation for the case of same Tx and Rx; c) the measured ToF matrix ti,o ;
and d) the relative path delays ∆ti,o after compensating for geometric effects. The proposed DP
method outperforms independent RF line analysis and adaptive amplitude-tracking [12].

In a real tissue scenario, a modulated ultrasound waveform with an oscillatory pres-
sure pattern is recorded. The recorded signal shows multiple local maxima, with vary-
ing amplitudes depending on the wave path. Simply picking the peak response in each
RF line yields incorrect ToF values, since different peaks may be selected for different
transmit-receive (Tx-Rx) pairs. An adaptive amplitude-tracking measurement, which
uses the current timing measurement as prior information for the adjacent Tx-Rx pairs,
was shown for non-destructive testing of heterogeneous materials [12]. However, it re-
quires manual initialization, which is not affordable for in-vivo scenarios and fails when,
due to wave interference and scattering effects, the reflected wave-front falls below the
system noise level (fading), as frequently observed in real tissue samples (Fig. 2c-d).

In this work a global optimization is introduced, which simultaneously considers
the full Tx-Rx dataset. Based on Dynamic Programming (DP), which has been applied
in US for the segmentation of bones [4] and vessel walls [1], an algorithm for detecting
oscillatory patterns in RF lines is proposed. It consists of a global cost matrix C(l, tl),
which is cumulatively built along successive RF lines l (adjacent Tx-Rx pairs) for a
list of N timing candidates tl = t0l , t

1
l . . . t

N
l , i.e., a list of possible time samples in

the current RF line l, among which the optimum reflector timing can be found. Also, a
memory matrix M(l, tl) records discrete timing decisions for each line and candidate.
The optimum reflector timing is then found, which minimizes the cumulative cost, and
following M(l, tl) backwards the optimum reflector delineation T (l) is drawn:(
C(l, tl)
M(l, tl)

)
=

(
mintl−1 {C(l − 1, tl−1) + f1(tl, tl−1)}+ f0(tl)

argmintl−1
{C(l − 1, tl−1) + f1(tl, tl−1)}

)
(1)

T (l) =

{
argmin

tl

C(l, tl), l = L; M(l + 1, T (l + 1)), l = 1 . . . L− 1;

with f0 and f1 non-linear functions that incorporate ToF for current tl and neighbouring
tl−1 RF lines. The general formulation of Eq. 1 introduces regularization into the re-
flector timing problem, enabling the natural incorporation of available prior information
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(oscillatory pattern, smoothness, multiple echoes, path geometry) into the optimization.
Moreover, the delineation does not require manual initialization and is parallelizable
linewise. The currently not optimized Matlab code runs on a single-core of an Intel
Core i7-4770K CPU in <100 s, but several future speed improvements are envisioned.

2.2 Total-variation sound-speed image reconstruction

Once the time delay matrix for all transmit-receiver elements ti,o has been obtained
(Fig. 2c), a SoS image is reconstructed. First, the baseline geometrical delays ti,o due
to different path lengths between different transmit-receiver elements are subtracted
from ti,o to isolate the relative delays induced by SoS inhomogeneities ∆ti,o (Fig. 2d):

∆ti,o = ti,o − ti,o ti,o = (c)−1
√
4d2 + p(io − ii)2 ∀i, o (2)

where c is the average tissue speed of sound (with a nominal value of 1540m s−1), d
is the distance between transducer and reflector, p is array pitch (0.3mm for our probe),
and ii, io are the indices of the Tx i and Rx o elements considered (1..128). Note that d
and c are estimated with linear regression based on Eq. 2. In practice, a non-linear fit is
performed to estimate both the reflector inclination and in-plane orientation.

The next step is the reconstruction of SoS distribution, which is expressed in slow-
ness units σ [s/m], with c(x, y) = c (1 + σ(x, y))

−1. The tissue region is discretized
into cells c traversed by a finite set of ray paths p corresponding to different Tx-Rx
pairs (Fig. 3a). With the known differential path lengths lp,c, the path delays ∆tp are
calculated in function of the slowness increments σc, i.e., ∆tp =

∑C
c=1 lp,cσc, in ma-

trix form ∆t=Lσ. Since reconstruction can be ill-posed, regularization becomes nec-
essary. A conventional solution in X-ray Computed Tomography (CT) [7], is Filtered
Backprojection (FBP), which averages the delays of all rays p propagating through cell
c. Previous reflector-based US works [9] have used Algebraic Reconstruction (ART),
in which ∆t=Lσ is approximated via singular value decomposition, preserving only
the largest singular values of L (typically 5% of the total). Both FBP and ART provide
a stable SoS-image reconstruction, which however suffers from strong streak artifacts
and a coarse resolution in the vertical direction (Fig. 4c). The reason is that, similarly
as in limited-angle CBCT, reflector-based SoS-USCT is an ill-posed problem [7], ev-
ery cell being traversed by only a limited set of path orientations; i.e., paths parallel to
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Fig. 3. Formulation of the sound-speed reconstruction problem. a) Ray tracing discretization. b)
Smoothness regularization with L2 and L1 norms. While the L2 norm favors the smooth sound-
speed profile, the L1 norm (TV) equally weights smooth and sharp gradients.
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Fig. 4. Simulation of sound-
speed image reconstruction
with (top) single and (bottom)
multiple inclusions: (a) in-
silico phantom, (b-c) recon-
struction with prior-art, and
(d) our TV approach.

the reflector are missing. This is a main geometric limitation with respect to dedicated
USCT systems, which incorporate complete angular path sets [3, 5, 10].

To overcome the limited-angle artifacts, we introduce additional regularizing as-
sumptions for the smoothness of the SoS-image:

σ̂TV = argmin
σ

{‖∆t− Lσ‖2 + λ‖Dσ‖n} ‖ (3)

where ‖Dσ‖n =
∑

i,j |σi+1,j − σi,j |n + |σi,j+1 − σi,j |n minimizes the sum of hor-
izontal i and vertical j gradients of the reconstructed image, and λ is a constant. The
norm of the smoothness term n critically influences the reconstruction results (Fig. 3b).
For L2-norm, i.e., ‖x‖2 =

∑
|x|2, a closed linear solution (Tikhonov regularization)

of Eq. 3 is found, but smooth gradients are favored with respect to sharp gradients. As a
result, the reconstruction does not significantly improve with respect to ART. However,
if the L1-norm n = 1 is used ‖x‖1 =

∑
|x| (Total Variation (TV) Regularization),

sharp and smooth gradients are equally weighted, which leads to the reconstruction of
a minimum number of piecewise homogeneous inclusions. This concept has been pre-
viously applied to regularize sparse array apertures in full-angle 3D USCT [11]. We
apply this here for the first time to the limited-angle ultrasound reflection tomography
case. With n = 1, Eq. 3 becomes a convex problem, which is iteratively solved with
off-the-shelf optimization packages.

The resulting SoS images (Fig. 4c) successfully filter out limited-angle artifacts
and delineate closed inclusion geometries. However, they still show reduced axial res-
olution, due to the extremely reduced path orientation set (according to Fig. 3a, for a
SoS image aspect ratio of 1:1, the largest available ray angle is 25◦). In order to com-
pensate for this resolution loss we introduce Anisotropically-Weighted Total Variation
(AWTV), which balances horizontal and vertical gradients with a constant κ according
to the available ray information in each direction:

σ̂AWTV=argmin
σ

{
‖∆t− Lσ‖2 + λ

∑
i,j
κ|σi+1,j − σi,j |+ (1− κ)|σi,j+1 − σi,j |

}
(4)

With a reconstructed pixel size equal to the array pitch (p =0.3mm), an optimum re-
construction performance was achieved with λ = 0.0008 and κ = 0.9 .
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2.3 Tissue phantoms, ex-vivo and in-vivo tests

A tissue-mimicking phantom was manufactured from gelatin (9 g/100mL water), mixed
with flour to simulate typical ultrasound reflectivity patterns (speckle). Hard inclu-
sions simulating tumors (Fig. 5a) were introduced by using a higher amount of gelatin
(13 g/100mL water) in well-defined phantom regions. In order to make these inclu-
sions invisible to conventional B-mode US, the same amount of scatterering was used
in tissue background and hard inclusions, so that both exhibited the same echogenic-
ity. To test the applicability of the method to breast mammography, a breast elastog-
raphy phantom (Model 059, CIRS Inc., Norfolk, VA, USA) was tested. The phantom
is fabricated with a tissue-mimicking material (ZerdineTM) and shows a realistic breast
geometry, incorporating both skin layers and glandular tissue, together with cystic (wa-
ter) and dense lesions (with embedded microcalcifications) (Fig. 5b). Ex-vivo tests were
performed in bovine liver samples. Hard inclusions were simulated by ablating small
pieces of liver (submerged in 250mL water for 6min at 700W microwave). These
were afterwards inserted in the liver (Fig. 5c). Finally, a preliminary in-vivo test was
carried out with a healthy volunteer with benign cysts. While the subject sat in tripod
position (Fig. 5d), the sonographer placed the US probe on the region-of-interest. Then,
the subject held the positioning frame closed with both hands, while the reflector USCT
data was acquired. For all tests, B-mode US images were also generated from the multi-
static datasets for comparison with the SoS images.

3 Results and Discussion

The proposed DP method clearly outperforms independent RF line analysis and adap-
tive amplitude-tracking, enabling the acquisition of a continuous ToF matrix for real
tissues (Fig. 2c), in which small timing variations (<100 ns) caused by SoS inhomo-
geneities are successfully observed (Fig. 2d). Signal fading (Fig. 2b) was typically ob-
served around the inclusion boundaries, where strong wave refraction occurs due to
quasi-parallel incident ray paths. DP automatically filters out fading positions from the
reconstruction. Calibration experiments in gradually-heated water provided quantitative
SoS values with a sensitivity <0.005m s−1. The observed timing error of std=15 ns re-
sults in a noise floor of 0.8 µsm−1, corresponding to a < 0.1% sound-speed contrast.

The proposed AWTV SoS reconstruction achieves significant improvements in the
delineation of inclusion geometry (Fig. 4). Often-problematic vertical elongation of in-
clusions is strongly reduced (14%) compared to ART (>300%) and TV (95%), which
enables a quantitative reconstruction of original SoS values (SoS error<0.3%). Streak
artifacts, which are typical in ART (CNR=15 dB), are not visible in AWTV (CNR=37 dB).
Moreover, our novel approach successfully reconstructs multiple inclusions with differ-
ent SoS values and geometries (Fig. 4). Not only are the inclusion positions correctly
identified, but also are their SoS values and diameter satisfactorily estimated.

An excellent performance is observed in both phantom and ex-vivo tests. For the
gelatin phantom, the hard inclusions were manufactured with a small SoS contrast (-
3.5 µsm−1, 0.5% SoS increase), but nonetheless were successfully resolved (Fig. 5a).
In the more heterogeneous breast phantom (Fig. 5b) both hard inclusions (-17 µsm−1,
2.6% SoS increase) and cysts (-6 µsm−1, 0.9% SoS increase) show a higher contrast
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Fig. 5. Hand-held sound-speed mammography of gelatin phantom (a), breast-mimicking phantom
(b), ex-vivo liver sample with hard inclusion (c), and in-vivo data for a benign cystic mass (d).

and are well-separated from the background noise, which is around 0.6%. These values
are more representative of real breast tumors, as reported by [2]. The background noise
is related to reconstruction artifacts (e.g., the gradient information is missing at image
boundaries), and to a minor extent, to refraction effects not accounted for in the ray
tracing model. The hard inclusion in the ex-vivo liver samples was invisible in the B-
mode, but clearly delineated in the SoS image, with contrast similar to the breast phan-
tom; see Fig. 5d. Despite movement artifacts, lower US signal-to-noise ratio (<10 dB),
and imperfect coupling between reflector and breast tissue, the preliminary in-vivo test
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demonstrates a successful identification of cystic inclusion, with an expected lower SoS
contrast (-8 µsm−1) than the ex-vivo hard inclusions.

4 Conclusions and Outlook

A novel hand-held sound-speed imaging modality has been proposed with minimum
hardware modifications to conventional B-mode ultrasound systems. An accurate geo-
metric delineation of hypoechogenic inclusions was achieved with a high SoS-contrast
for hard inclusions in both breast elastography phantoms and ex-vivo liver samples. SoS
values are known as potential quantitative imaging biomarkers for breast mass differen-
tiation [2]. In our preliminary in-vivo test, even cystic inclusion, which are known to be
of low SoS contrast, were successfully identified, indicating the future potential for de-
tecting higher contrast cancerous tumors. The proposed method is radiation-free, pain-
less, and can potentially complement routine screening for breast cancer. Prospective
applications can be for other organs that allow reflector placement such as the testicles,
limbs, skin, the prostate, and with catheters; or during open-surgery, e.g., for liver.
Acknowledgment: This work was funded by the Swiss National Science Foundation.
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