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Abstract. MRI segmentation is a challenging task due to low anatom-
ical contrast and large inter-patient variation. We propose a feature-
driven automatic segmentation framework, combining voxel-wise classi-
fication with a Random-Walker (RW) based spatial regularization. Typ-
ically, such steps are treated independently, i.e. classification outcome
is maximized without taking into account the regularization to follow.
Herein we present a method for selective sampling of training patches,
in view of the posterior spatial regularization. This aims to concentrate
training samples near desired anatomical boundaries, around which the
gain from a subsequent RW regularization will potentially be minimal.
This trades off a lower classification accuracy for a higher joint seg-
mentation performance. We compare our proposed sampling strategy to
conventional uniform sampling on 20 full-body MR T1 scans from the
VISCERAL dataset, both with RW and Markov Random Fields regu-
larizations, showing Dice improvements of up to 12× with the proposed
approach.

1 Introduction

Segmentation of abdominal organs in medical images plays an important role in
therapy planning and diagnosis. In the clinics, manual segmentation is currently
still a common practice; leading to long processing times, subjectivity in the
resulting segmentations, and high time and cost expenditure of trained physi-
cians. Therefore, there is a need and significant interest for reliable automatic
segmentation methods. In recent years a number of multi-organ segmentation
methods have achieved promising results for both contrast-enhanced and non-
contrast-enhanced computed tomography (CT), e.g. [1–7]. The majority of these
methods use a form of multi-atlas segmentation [1, 2, 8, 4, 6]. Alternatively, in [5]
multi-boost learning and statistical shape models are used, and in [7] active
appearance models, live-wires and graph-cuts are used.

Unlike CT, magnetic resonance imaging (MRI) does not use ionizing radia-
tion for data acquisition, making it an attractive alternative where applicable. Its
segmentation, however, is a challenging task due to high variability in anatomy
appearance, low contrast across structures, and large inter-patient and inter-
scan variation. Thus, state-of-the-art in abdominal MRI segmentation is also



often significantly inferior to that of CT segmentation. In [9], an MRI multi-
organ segmentation method is presented by combining kernel graph-cuts with
shape-priors. The multi-atlas segmentation methods in [3] and [4] are invariant to
image modality and thus have been evaluated also on MR images. Nevertheless,
these results for MRI are not satisfactory for most clinical applications.

Typically, methods developed for MRI segmentation are optimized for one
specific abdominal organ, structure, or condition. One example of specialized
segmentation is [10], which proposes a method for renal compartment segmenta-
tion. Another example is the unsupervised myocardial segmentation presented
in [11]. Some of these methods exploit the characteristics of a specific organ ap-
pearance or MR acquisition type such as DCE-MRI in [10] or CINE/CP-BOLD
in [11]. Nevertheless, there are not many techniques that apply to the problem
of multi-organ abdominal MRI segmentation with high accuracy.

In this paper, we propose an automatic multi-organ segmentation method
for abdominal organs, which we test on unenhanced full-body T1 MRI from
the VISCERAL Anatomy organ segmentation dataset [12]. Our method consists
of random forest (RF) [13] based voxel classification followed by random walker
(RW) based spatial regularization. The main contribution of this paper lies in the
holistic analysis of a selective sampling strategy for classifier training, considering
the subsequent spatial regularization.

2 Methods

2.1 Features

For training and applying the classification, we extract image features that en-
code absolute normalized positions, statistical properties, anisotropic properties,
and spatial neighborhood information of anatomical structures. Prior to feature
extraction, we normalize all MRI intensity ranges to [0, 1], where 1 is assigned
to the mean of the highest 5% intensity values of each MR image. The features
are explained in detail below.

Location Features. Spatial position of each segmented voxel in three axes,
normalized within the given volume, yield 3 location features.

Intensity Features. We extract statistical intensity features from cubic patches
with edge length τint centered at each voxel. We compute intensity mean at two
different τint scales, as well as variance, skewness, and kurtosis at a single τint
scale, yielding a total of 5 intensity features.

Texture and Curvature Maps. Using the image itself (hereafter called the
intensity map Mint) we extract texture and curvature maps as in [14].

The texture map Mtex is generated through convolution of the MRI volume
with Gabor filters, which are realized as a combination of a Gaussian filter and a
complex sinusoid. The parameters of this texture filter are filter frequency ftex,
filter orientation ψtex, horizontal variance σtex,h, and vertical variance σtex,v. We
include Mtex as a dimension to our feature space.



For a gray-scale 3D MRI volume, curvature is calculated as the divergence
of the normalized intensity gradient. Due to high noise sensitivity of the diver-
gence operation, the intensity map is initially smoothed with a Gaussian kernel
with variance σcurv, followed by the removal of gradient values with magnitude
smaller than a threshold τcurv. The curvature map Mcurv is then calculated as
the divergence of this smoothed volume.
Anisotropy Features. Anisotropy along an orientation can provide discrim-
inant information. Thus, we compute the anisotropy of both Mtex and Mcurv

in the main 7 orientations in 3D (i.e., 4 diagonal and 3 along main axes) using
entropy as:

anid = −
∑
γ

pdγ log pdγ (1)

where pdγ is the probability distribution of a texture or curvature value γ within
neighborhood Nd with direction d ∈ {1, .., 7}; thus creating 14 features.
Context Features. The presence of one anatomical structure usually allows for
the inference of its neighboring structures. In order to capitalize on the regular-
ity of spatial relationships within the human body, we use context features as
shifts of intensity, texture and curvature maps in a total of 14 directions (i.e., 8
diagonal and 6 for the main three axes). In order to represent information from
a neighborhood of voxels rather than one single point, the image map is initially
averaged over a µ×µ×µ neighborhood. Context features are extracted from all
image maps (Mint, Mtex, and Mcurv) at multiple scales of shifts (ηcont) around a
given center voxel, such that both proximal and distant anatomical relationships
can be captured; resulting in a total of (14 directions×3 maps×3 shifts =) 126
context features.

The above lead to a total number of 149 features, a sample subset of which
is shown in Fig. 1.

2.2 Sampling

In order to alleviate any bias, an equal number of foreground and background
voxels is often sampled for classifier training. However, for full-body MRI vol-
umes, there exist a severe imbalance between the numbers of foreground and
background voxels. Conventionally, uniform sampling (UnS) is used, where sam-
ple locations are determined with a uniform probability, as illustrated in Fig. 2a.
While UnS aims at maximizing classification accuracy, it is not optimal with re-
gard to the final segmentation, as it puts undue emphasis on correctly classifying
irrelevant regions further away from the foreground structure; potentially, at the
cost of classification accuracy around the anatomical borders, where accuracy
is often needed. We therefore choose a sampling approach which is more apt to
capturing relevant information needed for the exact delineation of an anatom-
ical structure. We refer to this approach as selective sampling (SeS). In SeS,
foreground and background samples are chosen with a probability of

p(x) =
1

α
exp (−x/βSeS) (2)
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Fig. 1: Example slices of (a) original image Mint, (b) mean intensity (τint =
2mm), (c) mean intensity (τint = 20mm), (d) intensity variance (τint = 20mm),
(e) intensity skewness (τint = 20mm), (f) intensity kurtosis (τint = 20mm),
(g) texture map Mtex, (h) curvature map Mcurv, (i) texture anisotropy, and (j)
curvature anisotropy.

where α is a normalizing factor, x is the distance to the target structure border
and βSeS regulates the exponential decay. Figures 2b and 2c show examples of
SeS sample locations for kidney for two different numbers of total samples (ns).

2.3 Automatic ROI Selection

While learning algorithms can be highly accurate within a local region-of-interest
(ROI), with regard to large fields of view, atlas-based segmentation often has the
advantage of reliably detecting the approximate position of an organ (leveraging
the info from a larger region and hence the entire anatomical appearance). To
leverage such approximate localization in our framework, we use a multi-atlas
registration framework to transfer atlas annotations to define a ROI for the
subsequent classification to work. We use an MRF-based registration approach as
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Fig. 2: Cropped example slices of (a) UnS locations with ns=6000, (b) SeS lo-
cations with ns=6000, and (c) SeS locations with ns=600. Red pixels indicate
sampled foreground locations, while green indicates sampled background. Note
that in (a) many green dots are out of the displayed region.

in [8]. For a given testing MRI volume, we register several training MR volumes.
A sample superposition of such registered volumes is shown in Fig. 3b, for a test
image in Fig. 3a. Accordingly, we also combine the registered annotations for
each organ to effectively limit our classification task to a smaller ROI compared
to full-body MRI. For a given organ i, the ROI is determined by first finding a
bounding box of size nx × ny × nz around the registered training annotations,
and then enlarging it to a size of 2nx×3ny×2nz determined empirically. Fig. 3c
shows the superposition of thyroid training annotations within a constructed
ROI, and Fig. 3d shows the ground-truth annotation for this case.

2.4 Random Walker

Mere classification of pixels is likely to create speckled results, with holes and
islands of false negatives and positives. These artifacts can be minimized via
spatial regularization by incorporating the assumption that neighboring vox-
els are likely to belong to the same anatomical structure, such as using Markov
Random Fields (MRF). Nevertheless, when multiple regions are returned as pos-
itives, even regularization cannot determine which one(s) are the desired organ.
A common approach is then a post-processing step to select the largest connected
component, which however presents no guarantees on the correct selection as the
solution of the previous MRF problem is simply taken as a hard-decision (i.e.
the probabilities of locations are ignored during the component searching of the
final labeling). Random Walker (RW) instead is designed inherently to return a
single connected component, which is a an anatomical constraint known in most
clinical segmentation tasks. Therefore, in this work we choose RW for spatial
regularization.

RW is known to perform successfully, given seed locations inside (FG) and
outside (BG) the target structure. Alas, segmentation results can be sensitive to
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Fig. 3: Example slices of (a) the test volume, (b) superposition of registered atlas
images, (c) superposition of registered training thyroid annotations within the
determined ROI, and (d) test volume ground-truth thyroid annotation.

seed selection. We hereby propose an automatic seed selection method based on
mean-shift clustering (MSC) [15]. We initialize nc clusters centered at voxels with
the highest classification scores. Any voxel with a classification score below tMSC

is removed from this selection, which leaves ñ
(i,s)
c points for organ i and MRI

sequence s. Using the annotated organs from the training set, we calculate the
average volume vavg for a given organ. The MSC algorithm is then initiated with

ñ
(i,s)
c spheres of volume vavg centered at the selected points. Spheres with mean

points closer than half the radius (r(i,s)/2) are merged. After MSC convergence,
only voxels within the largest cluster are kept and assigned as FG seeds for the
RW. BG seeds are placed at a regular interval along the borders of the defined
ROI.

3 Results

Data Set. To evaluate the proposed method, the publicly available VISCERAL
Anatomy3 data set [12] with 20 full-body T1 sequence MRI images was used.
Each of which contains up to 20 annotated anatomical structures. In this paper,
we evaluated all structures with six or more available annotations. All results
presented in this paper are based on six-fold cross-validation.
Features and Classification. While the method described above does not call
for a specific type of classifier and may easily be extendable to other learning
methods, we have used RF classifiers for all experiments presented in this paper.



Fig. 4: Out-of-bag error vs. forest size for random forests trained on MRI of
anatomical structures.

This choice was based on preliminary experiments with RF and linear support
vector machines. We have trained separate RF classifiers for each organ, with
feature and classifier parameters determined empirically with a set of prelimi-
nary experiments on smaller image/organ sets. RF tree size was set to 50, as
derived from the out-of-bag error shown in Fig. 4. Similarly, 3000 foreground
and 3000 background samples were used for training each RF classifier. Differ-
ent types of features were analyzed using RF variable-importance scores. We
set the feature extraction parameters as follows: Intensity features: Mean with
neighborhood size τint=2 mm and τint=20 mm, variance, skewness, and kurtosis
with neighborhood size τint=20 mm. Texture map: Horizontal variance σtex,h=2,
vertical variance σtex,v=4, frequency ftex=16, and orientation ψtex = π

2 . Cur-
vature map: Variance σcurv=16 and threshold τcurv=0.01. Anisotropy features:
Neighborhood size ηani=20 mm. Context features: Averaging neighborhood size
µcont=3 mm, extraction scales ηcont=4 mm, ηcont=8 mm and ηcont=16 mm.

Registration for ROI Selection. For multi-atlas ROI selection, an MRF-
based registration framework as in [8] was used, which yields successful ROI
definitions for larger organs. For some organs (in particular, gallbladder and
adrenal glands), for which shape and anatomical surrounding are not good indi-
cators and for which such atlas-based segmentations typically fail, we switched
to affine transformation of the entire anatomy for the multi-atlas approach for
a less precise but robust location prior.

Sampling and Spatial Regularization. In order to analyze the influence of
sampling and spatial regularization on segmentation performance, we performed
experiments with the proposed SeS sampling and RW spatial regularization as
well as the corresponding standard approaches: UnS sampling as well as MRF
spatial regularization. The SeS sampling probability decay factor βSeS=12 mm
was optimized in preliminary experiments using a subset of anatomical struc-
tures. For MRF evaluation, RF classifier scores were used as MRF unary costs
and the pairwise costs were constructed by Potts model from MR intensity im-
ages. The proposed RW spatial regularization was parameterized empirically as
nc=10000 and tMSC=0.92.



Table 1: Organ Dice scores before spatial regularization and after RW/MRF
when trained with UnS and SeS vs. inter annotator median (inAmed) from [12].
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RF 0.05 0.10 0.12 0.06 0.05 0.17 0.14 0.51 0.49 0.62 0.15 0.13 0.21 0.05 0.09 0.21

so
a

MRF 0.05 0.08 0.13 0.06 0.05 0.16 0.14 0.57 0.56 0.68 0.16 0.14 0.23 0.09 0.13 0.26

U
n
S

RW 0.09 0.17 0.16 0.10 0.05 0.16 0.17 0.44 0.63 0.69 0.26 0.21 0.28 0.12 0.20 0.37

RF 0.61 0.50 0.06 0.09 0.63 0.12 0.08 0.30 0.19 0.25 0.11 0.12 0.12 0.22 0.07 0.03
MRF 0.26 0.29 0.44 0.12 0.68 0.44 0.35 0.62 0.41 0.49 0.54 0.51 0.48 0.35 0.48 0.60

S
eS

RW 0.64 0.75 0.39 0.14 0.60 0.58 0.59 0.76 0.76 0.79 0.66 0.63 0.68 0.45 0.50 0.73 P
ro

p
o
se

d

inAmed 0.61 0.55 0.82 0.76 0.74 0.91 0.91 0.90 0.94 0.93 0.85 0.85 0.75 - 0.78 0.90

Table 2: Relative Dice improvement of the proposed SeS-RW over other methods
for each anatomical structure given in the same order as Table 1.

SeS-RW/UnS-MRF 12.80 9.38 3.00 2.33 12.00 3.62 4.21 1.33 1.36 1.16 4.12 4.50 2.96 5.00 3.85 2.81
SeS-RW/UnS-RW 7.11 4.41 2.44 1.40 12.00 3.62 3.47 1.73 1.21 1.14 2.54 3.00 2.43 3.75 2.50 1.97
SeS-RW/SeS-RF 1.05 1.50 6.50 1.56 0.95 4.83 7.37 2.53 4.00 3.16 6.00 5.25 5.67 2.05 7.14 24.33
SeS-RW/SeS-MRF 2.46 2.59 0.89 1.17 0.88 1.32 1.69 1.23 1.85 1.61 1.22 1.24 1.42 1.29 1.04 1.22

The average of 6-fold cross-validation Dice scores per organ for all four combi-
nations UnS-MRF, UnS-RW, SeS-MRF, and SeS-RW as well as the classification
F1 scores (rows labeled as RF) prior to spatial regularization for both UnS and
SeS are presented in Table 1 along with the inter annotator median Dice score
reported in Fig. 4 of [12]. The highest scores per anatomical structure for UnS
and SeS separately are indicated in bold, while the highest score for both is high-
lighted in gray. Methods presented in this paper as novel combinations for MRI
segmentation are shaded in light blue. Out of these, we propose in particular SeS-
RW, selective sampling with random-walker. Accordingly, in Table 2 we present
the relative Dice score comparison of SeS-RW over other method combinations,
where UnS-MRF is taken as the state-of-the-art of similar classification-based
methods not utilizing the techniques proposed herein.

4 Discussion

Quantitative results presented in Table 1 show that, for the given data set, RW
with the proposed automatic seed selection outperforms the commonly used
MRF regularization. Furthermore, comparative results in Table 2 indicate that
the proposed approach provides on average over 12× Dice improvement for some
smaller organs such as gallbladder and adrenal gland, with a minimum aver-
age improvement being 16% for the right lung. Prior to spatial regularization,
UnS outperforms SeS for 11 out of 16 anatomical structures. This is due to the



boundary-focus of SeS, which leads to a large number of false positives outside
the organ to segment. However, after spatial regularization, methods based on
SeS prevail for all anatomical structures. It can be seen that the best results are
achieved by combining SeS sampling with RW. These scores indicate that the
false positives outside the target anatomical structure, caused by the focus of the
classifier on organ border regions, were successfully recovered by the proposed
spatial regularization strategy.

As seen in Table 1, for some anatomical structures, such as the aorta or the
first lumbar vertebra, our resulting Dice scores are relatively low. We attribute
this to the large amount of contextual information necessary to successfully
segment these structures. Clinical protocols for aorta segmentation, for example,
define the extents of the organ in relation to other structures. In such cases an
atlas-based segmentation as expected performs better through leveraging the
mutual contextual information from other anatomical structures.

While there currently is no atlas-based segmentation baseline for the VIS-
CERAL Anatomy3 full-body MR T1 modality, [3] lists such scores for the pre-
decessor challenges Anatomy1 and Anatomy2. Comparing the results in [3] to
SeS-RW confirms that atlas-based segmentation is superior for organs such as
first lumbar vertebra or aorta. On the other hand, however, SeS-RW is more
promising for smaller or irregularly shaped organs such as both adrenal glands,
gallbladder, spleen and urinary bladder. Atlas-based segmentation as used in [3]
tends to achieve higher scores for the right lung as opposed to the left, which
we assume to be caused by the larger portion of heart located on a person’s left
side. In contrast, SeS-RW’s scores for left and right lung are almost identical.

In the future, we will integrate atlas-segmentation priors, which we now al-
ready use for the ROI selection, as a probabilistic location prior into our SeS-RW
framework in order to combine the benefits of both frameworks. Nevertheless, our
current SeS-RW approach stands out for high performance in segmenting some
difficult organs, e.g. adrenal glands and gallbladder, even in comparison to CT
segmentations. For the adrenal glands, we are at a level of accuracy comparable
to inter annotator variability.

In Fig. 5a, we show the Dice score distribution of some representative anatom-
ical structures with our SeS-RW method. Additionally, a sample segmentation
result of our SeS-RW algorithm on one case is shown in Fig. 5b for qualitative
comparison with the corresponding ground-truth annotations shown in Fig. 5c
for this particular plane.

5 Conclusions

In this paper, we presented an automatic segmentation framework for abdominal
organs. We demonstrated the significance of choosing our sampling method in
accordance with the proposed spatial regularization. While all our experiments
were performed on MRI images, due to the complexity of MRI, we believe that
this approach can be generalized for other imaging modalities and anatomical
structures (i.e. bones) which were not part of our experiment data. Our future
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Fig. 5: (a) Distribution of Dice scores with SeS-RW segmentation, where AG is
adrenal gland and UB is urinary bladder. (b) A sample SeS-RW segmentation
and (c) its ground-truth annotation.

work will focus on combining atlas-based registration (i.e. from [8]) with our
framework in a probabilistic manner to further improve segmentation accuracy.
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