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Abstract. Spatial regularization is indispensable in image registration
to avoid both physically implausible displacement fields and potential
local minima in optimization methods. Typical `2-regularization is in-
capable of correctly recovering non-smooth displacement fields, such as
at sliding organ boundaries during time-series of breathing motion. In
this paper, Total Variation (TV) regularization is used to allow for accu-
rate registration near such boundaries. We propose a novel formulation
of TV-regularization for parametric displacement fields and introduce
an efficient and general numerical solution scheme using the Alternating
Directions Method of Multipliers (ADMM). Our method has been eval-
uated on two public datasets of 4D CT lung images as well as a dataset
of 4D MR liver images, demonstrating accurate registrations both inside
and outside moving organs. The target registration error of our method is
2.56 mm on average in the liver dataset, which indicates an improvement
of over 24% in comparison to other published methods.

Keywords: Medical image registration, Total Variation, 4D CT, ADMM

1 Introduction

Image registration is an essential part of several applications in modern medical
imaging, such as atlas-based segmentation, volumetric reconstruction from slices,
tissue parameter estimation and motion tracking. All these applications rely on
correctly estimating spatial anatomical correspondences between images. The
existence of such correspondences and an underlying bijective mapping cannot
be guaranteed in some registration contexts, such as inter-patient or 2D regis-
tration. However, in other contexts where the anatomy changes minimally, for
example, in intra-patient registration of time-series 3D (4D) volumes, one-to-
one correspondences do exist between images when the image margins that may
move inside/outside the field-of-view are neglected. Such 4D motion, however,
often involves sliding between different parts of anatomy, such as the liver or the
lungs over their surrounding (cf. Fig. 1). The resulting non-smooth motion fields
are difficult to represent and estimate using typical `2-regularized registration
techniques.

A simple way to accommodate for discontinuities near sliding boundaries is to
use binary masks for objects to be registered, such that deformations (or image
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Fig. 1. Sliding motion example from a 4D MRI liver sequence during breathing. Left:
Displacements for landmarks inside (green) and outside (red) the rib cage are visual-
ized. Right: Inferior-superior component of displacement fields estimated by the smooth
`2-regularized (left) and our TV-regularized (right) registration techniques. Note that
the sliding organ boundaries are captured better by our TV-regularized method.

similarity) outside object’s masks can be ignored. For motion estimation inside
the lungs, masks were identified in [9] using automatic lung segmentation from
4D CT. To guarantee physically possible motions along the mask surface, in [4]
two separate displacement fields were estimated simultaneously with additional
constraints. Nevertheless, motion masking has several disadvantages: They re-
quire an initial segmentation stage that is cumbersome when done manually and
error-prone when automatic. Furthermore, sliding can only be recovered at the
mask interface, making registration efficacy dependent on the hard decision made
at the prior masking stage. This problem was addressed by Kiriyanthan and Cat-
tin in [10], where they have proposed to estimate a motion mask automatically
during the registration process using the segmentation model of Chan et al [3].

Another way to allow for sliding motion is to model motion trajectories in
the time domain using intermediate images between breathing phases [2]. This
approach necessitates simultaneous processing of several image pairs, which im-
poses severe time and memory limitations. Also, heuristic techniques exists that
allow for sliding motion, such as the modified demons method [13], [11] or the
anisotropic demons [17], in which the Gaussian smoothing step is replaced with
anisotropic filtering. However, such methods do not have an explicit definition
of regularization and hence lack a formal cost definition. Therefore, they do not
allow for a coherent optimization scheme. Total Variation (TV), in contrast, can
be defined as a penalty and hence the registration can be solved in a well-defined
optimization framework as shown in this work.

Constraining spatial Total Variation penalizes spatial incoherence, but does
not restrict the displacement field to be smooth. This property of the TV norm
as a regularizer received much attention in the computer vision literature for
correctly estimating optical flow between scenes with independent motion of
overlapping objects [16]. A major difficulty with TV is the involvement of `1-
norm, which is non-differentiable at zero leading to numerical instabilities for
gradient-based methods. In [16], the use of its smooth seminorm approximations,
i.e. ‖x‖1 ≈ ϕε(x) =

√
x2 + ε, was proposed. However, for small ε, common



optimization algorithms easily become unstable. It is possible to employ discrete
optimization methods, formulating the registration problem on Markov random
fields [6]. This approach was applied for breathing motion estimation in [7],
however commonly-used message passing and graph-cut based algorithms are
inefficient for registering 3D volumes on fine grid resolutions. Fine displacement
estimation requires a dense discretization of the displacement search space, which
is extremely memory consuming for 3D data.

A recent approach for solving `1-norm problems is based on duality, which
was applied to non-parametric medical image registration in [12] using the sum
of square differences (SSD) metric. A census cost function was also used as im-
age residual yielding improved results for 4D CT lung images with breathing
motion [8]. However, such non-parametric pixel-level approaches easily lead to
physically implausible motion fields, for which the authors proposed a combined
median and Gaussian filtering of the displacement fields following each method
iteration. Such heuristic regularization may lead to unstable or suboptimal so-
lution schemes as mentioned above. Furthermore, non-parametric registration
methods are highly susceptible to local-minima and not robust during optimiza-
tion. As a remedy, a complex image metric based on local image statistics was
proposed in [8], leading to time-ineffective implementations with still no theo-
retical guarantees on the validity of the solution. Due to these and other dif-
ficulties, most registration techniques use parametric deformation models such
as B-splines, which offer physically plausible displacements in robust schemes
with large displacement capture ranges. In this work, we present a parametric
image registration approach formulated as a minimization problem with TV-
regularization, to recover anatomical non-smooth (sliding) motion in a coherent
optimization framework. To accommodate the `1-norm cost of TV, we introduce
an efficient solution scheme using the alternating directions method of multipliers
(ADMM).

1.1 Image Registration as Energy Minimization

Estimating the D-dimensional local transformation field t : Ω → RD, that maps
image Im : Ω → R to image If : Ω → R, is commonly formulated as the
following optimization problem:

min
t

ED(t; If, Im) + λER(t), (1)

where Ω is the image domain, ED is an image dissimilarity metric and ER is a
regularization term while λ controls the amount of regularization. Typically, ED

is a smooth metric such as the SSD, which allows for easy differentiation. For
regularization, a popular choice is to component-wise penalize the `2-norm of dis-
placement field derivatives, which leads to differentiable functionals [14]. Penal-
izing the `2-norm of the first derivative leads to the well-known smoothness reg-
ularization: E smooth

R (t) =
∑D
d=1

∑
x∈Ω ‖∇td(x)‖22δx . Any gradient-based solver

can then be used for minimizing (1) by computing the derivatives of the smooth
metric ED and smooth regularizer ER with respect to the transformation pa-
rameters.



1.2 TV-Regularization

Anisotropic TV-regularization can be written as the `1-norm of the finite differ-
ences of displacement field components as follows:

ETV
R (t) =

D∑
d=1

∑
x∈Ω
‖∇td(x)‖1 δx, (2)

where ∇ is a linear operator for finite differences, and δx is the volume of a
voxel. This functional is convex but no longer smooth, i.e. it is non-differentiable
with respect to x at ‖∇t(x)‖1 = 0. This leads to poor performance when using
standard gradient-based optimization methods. This is addressed in our work
by employing ADMM optimization [1, 5], described later below. First, we intro-
duce our displacement parametrization approach which allows us to impose TV
regularization on the displacement field simply and efficiently.

1.3 Parameterizing Displacement Fields

Parameterizing a displacement field greatly reduces the dimensionality of the
registration optimization problem. This constrains the size of parameter search
space, while discarding many physically meaningless transformations. This al-
lows for robust numerical methods that are more resilient to suboptimal local
minima.

We parametrize the displacement field t using
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Fig. 2. Control grid points.

trilinear interpolation (1st order B-splines) with
displacements k on control points that are placed
with N -pixel spacing, i.e. t = t(k), where k and
t are displacements stacked into column vectors.
Unlike higher order B-splines, linear interpolation
guarantees that the interpolated displacement val-
ues at grid knots are equal to the corresponding B-
spline coefficients. We then impose regularization
on the displacement control grid points k instead of
the displacement field t itself. Such approximation
is commonly used in smooth registration methods,
where it was reported in [15] to be practically equivalent to imposing constraints
directly on the displacement field itself.

Parametric Upper Bound for TV. For linear interpolation in the 1D case, it
is obvious that the TV of both the control grid and the underlying displacement
field are exactly the same, i.e. ETV

R (t(k))=ETV
R (k). For 2D and 3D cases this

equality does not necessarily hold. However, an upper bound on such displace-
ment field TV given the TV on the control grid can be computed which we show
as given below.



For simplicity, we consider the TV of a single component of a 2D displacement
field within a single patch shown in Fig. 2. The TV of the patch control points k
and the field t are then, respectively:

ETV
R (k) = (|k(1, 2)− k(1, 1)|+ |k(2, 2)− k(2, 1)|)N, (3)

ETV
R (t) =

N−1∑
i=0

N−1∑
j=0

(∣∣t ( i+1
N , j

N

)
− t
(
i
N ,

j
N

)∣∣+
∣∣t ( iN , j+1

N

)
− t
(
i
N ,

j
N

)∣∣) . (4)

Using the fact that t is linearly interpolated from k and employing the triangle
inequality, we can infer that:

ETV
R (t(k))− ETV

R (k) ≤ N max(|∇k|) . (5)

In other words, the TV approximated on the control grid is an upper bound for
TV on t, and such approximation error decreases linearly as the parametrization
grid is refined. Accordingly, we start with a coarse grid and refine it gradually by
initializing the optimization at each step from upsampled lower-resolution grid.

1.4 Numerical Scheme: ADMM

As was mentioned in the introduction, accurate and robust minimization of the
parametrized TV-regularized energy (1) is difficult because the gradient required
to simultaneously minimize both the data term ED and the regularization term
ETV

R does not always exist. To overcome this challenge, we utilize the alternate
direction method of multipliers (ADMM), which allows us to iteratively minimize
each of the two terms separately, while constraining their solutions to be similar.

To this end, we introduce a redundant variable z to (1), which leads to the
following equivalent problem:

min
k,z

ED(t(k); If, Im) + λ‖z‖1 , s.t. ∇k = z. (6)

Writing the augmented scaled Lagrangian for the problem above and performing
the dual descent method [1] results in the following iterative ADMM scheme,
where the optimization of ED and `1-norm terms are decoupled into two separate
subproblems.

kj+1 = arg min
k

ED(t(k); If, Im) +
ρ

2
‖∇k− zj + uj‖22, (7a)

zj+1
d = arg min

zd

λ

ρ
‖zd‖1 +

1

2
‖∇kj+1

d + ujd − zd‖22, d = 1, . . . , D, (7b)

uj+1 = uj + kj+1 − zj+1. (7c)

The k-update step (7a) finds control grid displacements that optimize the image
similarity metric. It is a smooth optimization problem that can be solved using
any gradient-based optimization technique by adding ρ∇>(∇k− zj +uj) to the



gradient of the similarity metric. The penalty parameter ρ is usually set to 1
and can be updated heuristically to accelerate convergence [1]. u is a scaled dual
variable. The z-update step (7b) is called the proximity operator of the `1 norm
and can be solved by element-wise shrinkage:

zj+1
d = max{uj + kj+1 − λ/ρ, 0} −max{−uj − kj+1 − λ/ρ, 0}. (8)

Implementation. Input image intensities are first scaled to the [0, 1] interval.
Gaussian pyramids are used by starting the registration with both downsam-
pled images and a coarse control grid. Registration at each consecutive image
level is then initialized by interpolating from the previous level’s control grid
displacements. When the finest level of the image pyramid is reached, we start
to subdivide the control grid, effectively decreasing the pixel span of each control
patch and hence refining the estimated displacement resolution. We use SSD for
CT images and normalized cross correlation for MRI as similarity metrics.

The method was implemented in Matlab with parallelized mex-functions for
warping images and calculating ED gradient. The k-update step in (7a) is solved
with the limited-memory BFGS method of the minFunc1 package with the maxi-
mum number of iterations set to 10. Variables x, z, u were initialized with zeros.
The algorithm was executed on a 6-core Intel Xeon 2.4 GHz processor.

2 Results and Discussion

We evaluated our parametric TV registration (pTV) method on the following
three abdominal time-series datasets that involve breathing motion:

4D-CT POPI Dataset. The public POPI2 dataset [18] consists of: 10 3D
CT images of different phases of one breathing cycle; 41 corresponding landmarks
for each of the images; a binary lung mask; and the deformation fields estimated
by the POPI organizers using both the standard demons algorithm and the
free-form deformation method (FFD). We resampled all images to an isotropic
2×2×2 mm3 pixel resolution, resulting in 235×176×141 voxels/image. We then
registered the first image (phase) to all other 9 images as in [18], resulting in 9
individual registrations. The regularization parameter λ was set to 0.001. The
average run-time of our registration method was 30 seconds per image pair.

1 http://www.di.ens.fr/~mschmidt/Software/minFunc.html
2 http://www.creatis.insa-lyon.fr/rio/popi-model

Table 1. Mean TRE [mm] over 41 landmarks for the 9 POPI registrations.

TRE for each image pair Average

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 TRE

Demons 1.28 1.38 1.39 1.22 1.24 1.25 1.29 1.12 1.11 1.25

FFD 0.79 0.80 1.13 1.11 1.10 1.20 1.20 0.88 0.92 1.01

pTV 0.72 0.71 1.12 1.01 1.11 1.03 1.06 0.84 0.81 0.93
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Fig. 3. Registration spatial accuracy with
respect to target distance from the lung
wall. Local regression curves are also pre-
sented for illustration purposes.
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Fig. 4. Our proposed method pTV com-
pared to the top 6 out of 20 results, pub-
lished and reported on DIR website.

Table 2. Mean (snap-to-pixel) TRE on DIR data set, where cTV is the non-parametric
TV method [8] with `1-norm census cost function and cTVmask is the same method
with motion masks provided.

TRE for each 4D sequence
Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean

cTVmask [8] 0.78 0.78 0.93 1.24 1.22 0.94 1.01 1.11 0.98 0.94 0.99
cTV [8] 0.79 0.80 1.02 1.23 1.27 1.09 1.87 3.01 1.11 1.17 1.37
pTV 0.76 0.78 0.82 1.31 1.25 1.11 0.97 1.28 1.04 0.99 1.03

Table 1 shows the target registration error (TRE) of our pTV algorithm in
comparison to Demons and FFD results reported in [18]. It can be observed
that our method achieves an improved registration accuracy overall. One source
of such improvement is the replacement of `2-regularization of FFDs, which is
unable to capture sliding motion near the lung wall. This is is demonstrated in
Fig. 3 on one image pair for targets within 15 mm of the lung wall. Our method
pTV is seen to have significantly lower TRE for targets closer to the lung wall.

4D-CT DIR Dataset. The public DIR dataset3 contains 10 4D CT se-
quences from different individuals, each sequence with 10 images/breathing-
phases with an average resolution of 1×1×2.5 mm3 and sizes varying between
256×256×94 and 512×512×136 voxels (see Fig. 5). On this dataset, we empiri-
cally set λ to 0.001 and the finest control grid spacing to 3 voxels. This led to
an average run-time of 3 minutes for pTV. To evaluate our method, from each
sequence we used the images of extreme inhale and exhale breathing phases,
which are annotated with 300 landmarks inside the lungs.

DIR is an ongoing benchmark, where TRE is computed by the organizers
from submitted participant registration results (using a snap-to-voxel fashion
for consistency with annotations). Those results are published online, allowing

3 http://www.dir-lab.com
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Fig. 5. An axial slice of a CT image from DIR dataset and the corresponding inferior-
superior component of deformation fields for different regularization techniques. Note
how `2 regularization oversmoothes deformations near lung borders at the sliding in-
terface.

for a relative assessment of the performance of our pTV algorithm. Fig. 4 shows
the average TRE for each sequence, comparing pTV to the top 6 published meth-
ods (out of 20 in total at the time of evaluation) from DIR. Note that most DIR
submissions are customized particularly for lung (pulmonary CT) registration,
and several of them use lung masks to recover motion only inside the lungs. This
is depicted in Fig. 4 by representing methods using masks with different markers.
Despite not using any customization particular for the lungs, our general image
registration method pTV yields comparable results to the other techniques. Fur-
thermore, pTV outperforms all other methods that do not utilize a lung mask,
despite the relatively small margin for consistent improvement over the reported
inter-observer variability. A slice of the estimated displacement field is seen in
Fig. 5 to better capture sliding motion.

We also compare pTV with the non-parametric TV-regularized registration
method of [8] that uses a census cost function. Two results with and without
using lung masks are reported in [8], namely cTV and cTVmask, with which we
compare our pTV results in Table 2. A 24% reduction in TRE can be observed
when comparing pTV to the cTV version without mask.

4D-MRI liver sequences. Since the above lung datasets have landmarks
only inside the lungs, we also evaluated our method on the dataset from [17].
Therein, landmarks are provided on both sides of the sliding liver interface,
allowing for improved assessment of sliding-motion registration algorithms. 32
and 20 landmarks were provided inside and outside the liver, respectively, in
the extreme breathing phases of 8 4D-MR sequences, where two sequences each
were recorded from 4 volunteers. The images have 1.37×1.37×4 mm3 resolution
and an average size of 164×189×23 voxels, for which pTV required an average
run-time of 50 s. Table 3 shows substantial improvement of pTV (19% inside and
35% outside the liver) in comparison to the results reported in [17].



Table 3. Average mean TRE [mm] for the liver dataset. For eji being the TRE for
landmark i in sequence j, each cell reports: meanj{meani e

j
i} (meanj{maxi e

j
i}).

The proposed method pTV (with λ = 0.0005) is compared to regular and anisotropic
demons registrations.

Method Inside the liver Outside the liver Overall

Demons 3.57 (12.87) 4.25 (14.38) 3.83 (15.77)
Aniso. Demons [17] 3.00 (11.86) 4.05 (13.15) 3.40 (14.03)
pTV 2.42 (11.0) 2.64 (7.52) 2.56 (9.78)

3 Conclusions

In this paper we have presented a parametric approach for image registration
with total variation regularization. We have evaluated our method on datasets
of different imaging modalities and anatomies. Our method was shown to accu-
rately estimate anatomical displacements near breathing-induced sliding bound-
aries. For thoracic 4D CT images, the registration accuracy of the proposed al-
gorithm was shown to be comparable to the best methods from the DIR dataset,
which rely on lung segmentation masks, and to outperform the best mask-free
methods published to date. For 4D breathing motion estimation, our method
was also shown to outperform both the non-parametric TV-regularized registra-
tion method of [8] and the anisotropic smoothing method of [17]; with an overall
reduction of the TRE by 24%. Furthermore, our proposed approach allows for
using any registration method based on energy minimization for solving the k
update step in the ADMM solver. This can facilitate adapting the algorithm to
specific image modalities or existing workflows in clinical practice, which is an
interesting direction for further research.
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